Recent evidence and implications concerning road vehicle emissions of  $NO_X$  and  $NO_2$ 

#### David Carslaw, Sean Beevers and Emily Westmoreland

Environmental Research Group, King's College London

21 September 2010

## Acknowledgements

This work has relied on significant input from others:

Tim Murrells and Yvonne Li (AEA)

Ben Barratt and Martin Williams (ERG, King's College London)

James Tate (ITS, University of Leeds)

# Outline

### 1 Introduction

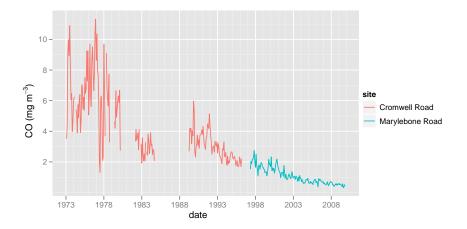
- 2 Trends in  $NO_X$ ,  $NO_2$  and primary  $NO_2$
- 3 Vehicle emissions
- 4 Concluding remarks

# Outline

### 1 Introduction

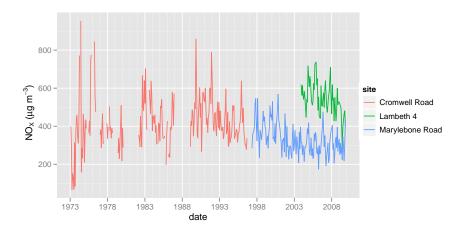
- 2 Trends in  $NO_x$ ,  $NO_2$  and primary  $NO_2$
- 3 Vehicle emissions
- 4 Concluding remarks

# Taking stock


... or how things have or have not changed over the years

#### Some questions

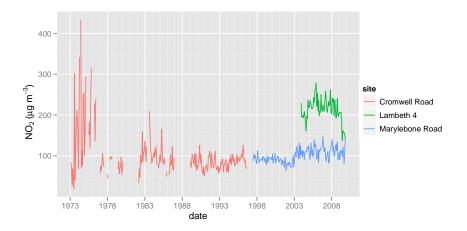
- $\bullet$  How have concentrations of  $NO_X$  and  $NO_2$  changed over the past few decades?
- How does the UK compare with the rest of Europe?
- Do these trends agree with emissions inventory estimates?
- Does recent vehicle emissions remote sensing data improve understanding?
- What are the implications for measures to control NO<sub>X</sub> and NO<sub>2</sub>?


## Trends in a strong traffic emissions tracer

CO concentrations at busy road in London over four decades



Trends in CO have been clearly downward  $\approx$  order of magnitude reduction


# Trends in a strong traffic emissions tracer $NO_X$ concentrations at busy road in London over four decades



Trends in  $\mathsf{NO}_\mathsf{X}$  are much less clear on this basis — or at least different to  $\mathsf{CO}$ 

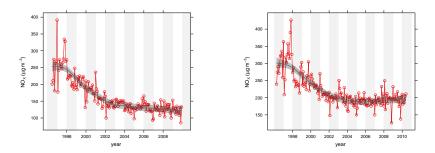
## Trends in a strong traffic emissions tracer

 $\mathsf{NO}_2$  concentrations at busy road in London over four decades



Many sites have shown increases in  $NO_2$  concentrations in recent years

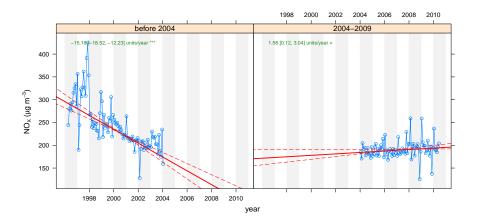
# Outline


#### Introduction

- 2 Trends in  $NO_X$ ,  $NO_2$  and primary  $NO_2$ 
  - 3 Vehicle emissions
- 4 Concluding remarks

# Recent trends in roadside $NO_X$ concentrations ${\sf UK}\xspace$ and ${\sf London}\xspace$

12 UK sites


10 Inner London sites



• Generally concentrations have been weakly downward over the past 6–8 years

# Recent trends in roadside $\mathsf{NO}_\mathsf{X}$ concentrations

Trends split by period in inner London



We can split trend periods and consider last 6-8 years in more detail

# Trend summary for $\ensuremath{\mathsf{NO}_{\mathsf{X}}}$

Measurement trends by site type 2004–2009 (% per year)

| Location            | median trend (2004–2009) |  |
|---------------------|--------------------------|--|
| Inner London        | -0.6 [-2.8, +1.0]        |  |
| Motorway            | -3.4 [-8.1, +2.1]        |  |
| Outer London        | -1.7 $[-3.7, +0.6]$      |  |
| UK roadside         | -1.4 [ $-3.3$ , $+0.2$ ] |  |
| UK rural            | -1.9 $[-4.4, +1.0]$      |  |
| UK urban background | -2.1 $[-4.2, -0.2]$      |  |
| UK urban centre     | -0.8 $[-2.8, +1.1]$      |  |

Trends in road vehicle emissions over the same period are  ${\approx}5\text{--}6$  %/year based on current UK emission factors

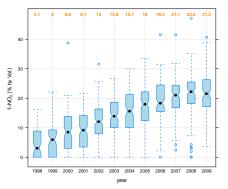
# Trend summary for NO<sub>2</sub>

Measurement trends by site type 2004–2009 (% per year)

| Location            | trend (2004–2009)       |
|---------------------|-------------------------|
| Inner London        | $-0.5 \ [-0.7, \ +0.9]$ |
| Motorway            | -0.8 [-7.1, +3.7]       |
| Outer London        | -0.8 $[-2.7, +1.0]$     |
| UK roadside         | -0.6 $[-2.2, +1.1]$     |
| UK rural            | -1.4 $[-3.7, +1.1]$     |
| UK urban background | -0.8 $[-3.0, +0.9]$     |
| UK urban centre     | $-0.4 \ [-1.9, \ +2.2]$ |

# Main origins of $NO_2$ in the urban atmosphere

And types of conditions where they are important

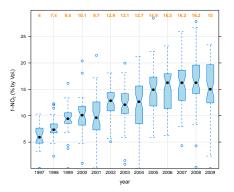

- The character of NO<sub>2</sub> pollution has changed over the years
  - $\blacktriangleright$  The NO +  $O_3$   $\rightarrow$   $NO_2$  +  $O_2$  has always been important and is dominant
  - ► For high concentrations of NO<sub>X</sub> the (slow)  $NO + NO + O_2 \rightarrow 2NO_2$  reaction *was* important, along with conjugated diene chemistry (UK episode in December 1991)<sup>1</sup>
  - More recently, the direct emission of *primary* NO<sub>2</sub> has emerged as being important
- Historically the amount of NO<sub>2</sub> has widely been assumed to be 5-10% (by volume) of the NO<sub>X</sub>.

<sup>&</sup>lt;sup>1</sup>Bower et al. (1994); Shi and Harrison, 1997

# Trend in primary NO<sub>2</sub> in London

23 London sites with long time series

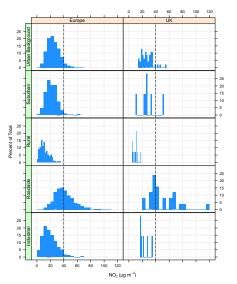
- Use the simple chemical model
- Clear increase in f-NO<sub>2</sub> over past 12 years
- Quite a lot of site to site variation
- Typical values in recent years around 22% by vol.




Carslaw and Beevers, (2005). Estimations of road vehicle primary NO<sub>2</sub> exhaust emission fractions using monitoring data in London. *Atmos. Env.* 39(1), 167177.

# Trend in primary $\mathsf{NO}_2$ across the UK

12 UK roadside sites with long time series


- Use the simple chemical model
- Clear increase in f-NO<sub>2</sub> over past 13 years
- Quite a lot of site to site variation
- Typical values in recent years about 15–16% by vol.



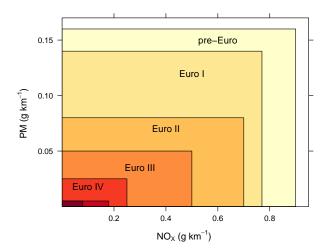
# Analysis of data from Europe

 $\mathsf{NO}_2$  concentrations in 2008 split by site type

- Analysis 2,728 sites from a wide range of counties and site types
- Remarkably consistent between UK and rest of Europe
- In Europe 18.9% of all sites exceeded the annual mean NO<sub>2</sub> limit value in 2008, which is very similar to that in the UK of 18.0%



http://air-climate.eionet.europa.eu/databases/airbase


# Outline

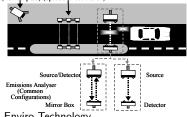
#### Introduction

- 2 Trends in  $NO_x$ ,  $NO_2$  and primary  $NO_2$
- 3 Vehicle emissions
- 4 Concluding remarks

## European emissions legislation over the years

For diesel car  $\mathsf{NO}_X$  and  $\mathsf{PM}_{10}$  from pre Euro to Euro VI




Plot indicates approximate reduction in  $NO_X$  and  $PM_{10}$  vehicle emissions expected due to tightening vehicle emissions legislation 19/41

## Remote sensing

- Remote sensing
  - Infrared/UV beam across road
  - Individual vehicle exhausts measured
  - Measures ratios of NO, CO, HC, "smoke" to CO<sub>2</sub> i.e fuel-based emission factors
  - Some practical limitations
- Several campaigns from 2008-2010
  - About 72,000 vehicles measured
  - Number plates matched by SMMT (CarweB http://www.carwebuk.co.uk/)



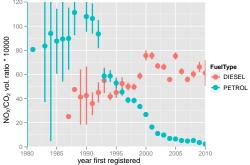
Camera Vehicle Detector (Number plate) (Speed andAcceleration)



Thanks to Dr James Tate, ITS, University of Leeds and Enviro Technology

# Assumptions regarding $f-NO_2$

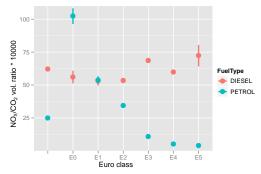
Used for the remote sensing


| Vehicle class        | Euro class          | % NO <sub>2</sub> (by volume)<br>Grice et al. (2009) | % NO <sub>2</sub> (by volume)<br>Swedish RSD |
|----------------------|---------------------|------------------------------------------------------|----------------------------------------------|
| Petrol cars          |                     |                                                      |                                              |
|                      | All                 | 3                                                    | ≈1 [12551]                                   |
| Diesel cars and LGVs |                     |                                                      |                                              |
|                      | Euro II and earlier | 11                                                   | 14-20 [177]                                  |
|                      | Euro III            | 30                                                   | 30–47 [538]                                  |
|                      | Euro IV–V1          | 55                                                   | 55–60 [881]                                  |
| HGVs                 |                     |                                                      |                                              |
|                      | Euro II and earlier | 11                                                   | 7 [218]                                      |
|                      | Euro III            | 14                                                   | 9 [353]                                      |
|                      | Euro IV–V1          | 10                                                   | 13 [52]                                      |
| Buses                |                     |                                                      |                                              |
|                      | Euro II and earlier | 11                                                   | 10 [78]                                      |
|                      | Euro III (no trap)  | 14                                                   | 30 [93]                                      |
|                      | Euro III (trap)     | 35                                                   | 25–52 [45]                                   |
|                      | Euro IV–V1          | 10                                                   | 48                                           |

Jerksjö, M., Sjödin, A., Bishop, G.A. and Stedman, D.H. (2008), On-road emission performance of a European vehicle fleet over the period 1991–2007 as measured by remote sensing. 18th CRC On-Road Vehicle Emissions Worskhop San Diego, March 31 – April 2, 2008.

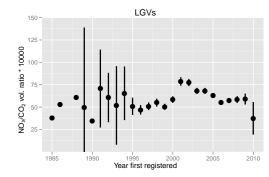
# Remote sensing

Petrol and diesel car  $NO_X$  emissions


- NO<sub>X</sub> emissions from petrol cars have decreased by  $\approx$ 96% since the early 1990s
- Diesel car emissions have increased, or at best been stable for the past 25 years or so
- Possible to see the effects of different Euro class legislation



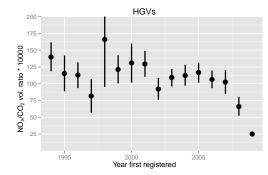
# Remote sensing


Petrol and diesel car  $\ensuremath{\mathsf{NO}}_X$  emissions

- Vehicle emissions by Euro class
- Highlights the stability of diesel NO<sub>X</sub> emissions over the years



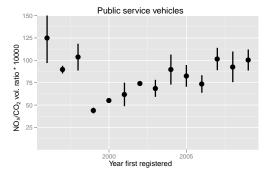
### Remote sensing Diesel LGV NO<sub>X</sub> emissions


• The diesel van NO<sub>X</sub> trend in emissions are similar to diesel cars

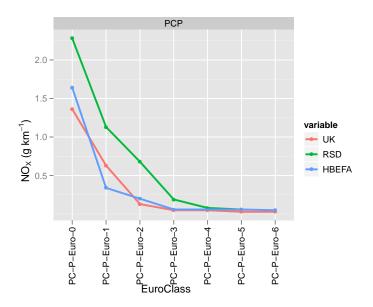


# Remote sensing

HGV emissions  $NO_X$  emissions


 HGV emissions have been relatively stable, with some evidence of a decrease in NO<sub>X</sub> for Euro IV

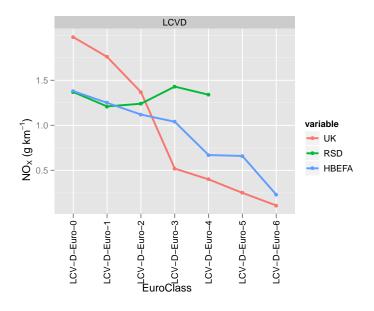



# Remote sensing

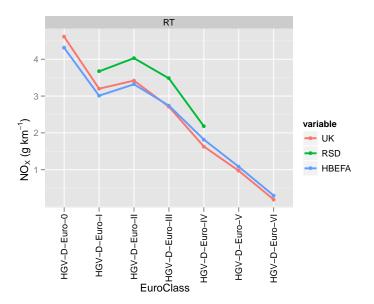
Bus emissions of  $NO_X$ 


- Emissions from public service vehicles (buses) have tended to increase with time
- Need to be careful about specific fleets

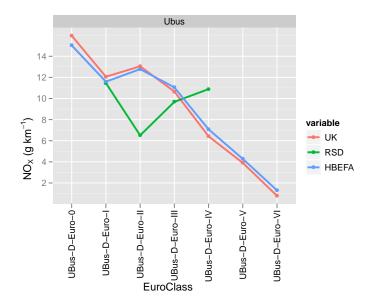



### Comparison of different emission estimates for petrol cars Comparing UK, HBEFA and RSD

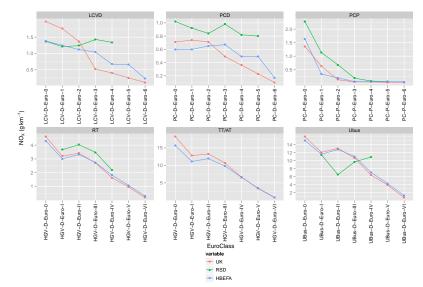



### Comparison of different emission estimates for diesel cars Comparing UK, HBEFA and RSD

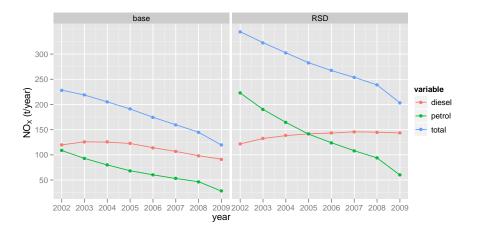



# Comparison of different emission estimates for diesel LGVs Comparing UK, HBEFA and RSD



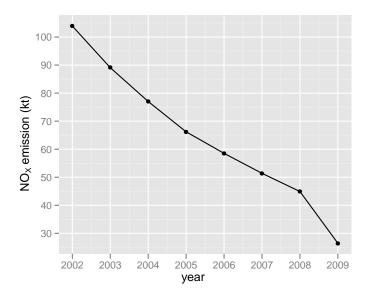

# Comparison of different emission estimates for rigid HGVs Comparing UK, HBEFA and RSD




# Comparison of different emission estimates for urban buses $_{\mbox{Comparing UK, HBEFA and RSD}}$



## Overall comparison of different emission estimates Comparing UK, HBEFA and RSD

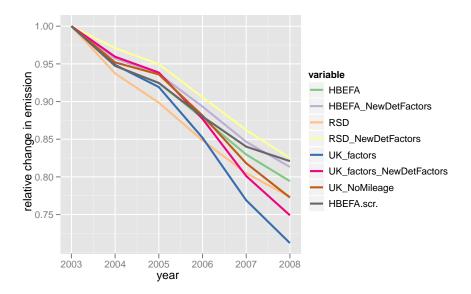



## Provisional impacts on emission inventories NAEI base case and RSD for UK urban NO<sub>X</sub> emissions



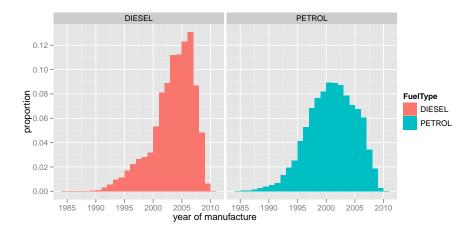
Note! As currently calculated the RSD assumptions do not account for catalyst degradation over time. This turns out to be a thorny problem ...

# Closer look at UK urban $NO_X$ trends for petrol vehicles Catalyst failure assumptions are evident




# Refining the petrol vehicle estimates

Issues to do with catalyst failure/degradation


- The downward trend in  $NO_X$  in UK urban areas (including London) is dominated by what happens with petrol vehicles
  - The reduction is such that it swamps even increases in diesel NO<sub>X</sub> emissions
- The assumptions concerning emission degradation/catalyst failure are very important, and there are some important effects:
  - It is assumed some vehicle emissions **improve** over time sometimes substantially e.g. a Euro II petrol car emits 42% less NO<sub>X</sub> in 2009 than when it was first introduced and a Euro III diesel car emits 31% less NO<sub>X</sub> on the same basis
  - Because of the way these calculations are made, it is not straightforward to apply alternative assumptions

# Scenarios for $NO_X$ emissions change for the LAEI Based on predictions at a series of monitoring sites



## Other more basic questions

Have we got the fleet mix right in inventories?



Data based on mean remote sensing vehicle stock  ${\approx}2009$ 

# Outline

#### Introduction

- 2 Trends in  $NO_x$ ,  $NO_2$  and primary  $NO_2$
- 3 Vehicle emissions
- 4 Concluding remarks

## Summary points

**1** Trends in NO<sub>X</sub> and NO<sub>2</sub> have levelled off in the past 6–8 years

- UK inventories are in clear disagreement with ambient trends
- The situation in much of the rest of Europe looks similar

# Summary points

**(**) Trends in NO<sub>X</sub> and NO<sub>2</sub> have levelled off in the past 6–8 years

- UK inventories are in clear disagreement with ambient trends
- The situation in much of the rest of Europe looks similar
- Vehicle emission remote sensing data has proved to be extremely valuable
  - Key has been linking with comprehensive vehicle information databases (CarweB)
  - ► Can re-calculate NO<sub>X</sub> emissions and compare with inventories
  - Light duty vehicle emissions seem to represent most of the disagreement

# Summary points

 ${\small \bigcirc}$  Trends in NO\_X and NO\_2 have levelled off in the past 6–8 years

- UK inventories are in clear disagreement with ambient trends
- The situation in much of the rest of Europe looks similar
- Vehicle emission remote sensing data has proved to be extremely valuable
  - Key has been linking with comprehensive vehicle information databases (CarweB)
  - ► Can re-calculate NO<sub>X</sub> emissions and compare with inventories
  - Light duty vehicle emissions seem to represent most of the disagreement
- Understanding emission inventory trends is far from simple
  - Many, many influences which change over time
  - Beginning to unpick the importance of different factors