PM contribution of wood burning in Paris (France)

J. Sciare, and LSCE-CAE team

Laboratoire des Sciences du Climat et de l'Environnement (LSCE) Mix unit CNRS-CEA, Gif-sur-Yvette, France

- + Domestic wood burning in France
- + New techniques to characterize wood burning aerosols
- + Intensive Field studies of wood burning aerosols in Paris region
- + Spatial and Temporal distribution of wood burning aerosols in Paris
- + Conclusions

CONTRIBUTION OF WOOD BURNING IN DOMESTIC HEATING IN FRANCE

+ France is the **first consumer of wood (energy-use) in Europe** (in front of Sweeden, Finland and Germany); most of it being use for domestic heating

+ 50% of French household owe individual wood burning heating system

+ 60,000 employments in 2006 !

- + 40% increase sell of domestic heater using woodIncrease due to
- Economic criteria (regular increase of the price of fossil fuel energy)

2) Life quality (incl. esthetic perspectives)

Atmospheric emissions of wood burning domestic heaters (1/2)

Émissions	Cheminées ouvertes	Poêles	Cuisinières	Foyers fermés	Chaudières		
Emissions					anciennes	classe 1	classe 3
SO2 (en g/GJ)	20	20	20	20	20	20	20
NOx (en g/GJ)	50	50	50	50	50	50	50
COVNM (en g/GJ)	1700	1600	1600	1600	1600	400	40
CO (en a/GJ)	7000	7000	7000	6000	7000	3200	950
Particules (en g/GJ)	750	310	310	310	250	34	20
Dioxines (ng.ITEQ/GJ)	100	100	100	100	100	100	100
HAP (en mg/GJ)	284	602	602	224	55	34	34

Tableau 3. Facteurs d'émission de polluants par unité d'énergie entrante pour différents types d'appareils

75% of the French domestic heaters using wood Only 15% of the French domestic heaters using wood

CONTRIBUTION OF WOOD BURNING IN DOMESTIC HEATING IN FRANCE

Atmospheric emissions of wood burning domestic heaters (1/2)

Atmospheric pollutant emissions in France (2003) / Source Atmo Rhône-Alpes 2007

 \Rightarrow PM emissions from residential heating is almost exclusively due to wood burning

+ New techniques to characterize wood burning aerosols

Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France)

O. Favez^{1,*}, I. El Haddad², C. Piot^{3,4}, A. Boréave¹, E. Abidi², N. Marchand², J.-L. Jaffrezo³, J.-L. Besombes⁴, M.-B. Personnaz⁵, J. Sciare⁶, H. Wortham², C. George¹, and B. D'Anna¹

Three different methods to discriminate between fossil fuel, wood burning, and secondary organics

A chemical mass balance (CMB) model using filter sampling data: specific source tracers (levoglucosan) and *a priori* knowledge of their emission rate for this source (Schauer et al., 1996)

An Aethalometer model using aethalometer instrument & filter sampling data: *Sandradewi et al.* (2008) based on the UV-absorbing properties of biomass burning aerosols (brown carbon)

A Positive Matrix Factorization (PMF) model using AMS data (Aerosol Mass spectometer)

Approach #1: The "CMB" model (mono-tracer approach)

This method relies on

- 1) the use of levoglucosan, an unambiguous tracer of the cellulose combustion,
- 2) the use of a specific emission ratio between this tracer and organic carbon from wood burning

Fine, P. M., Cass, G. R., and Simoneit, B. R. T. : Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the Southern United States, Environ. Sci.Technol., 36, 1442–1451, 2002.

Approach #2: The "AETHALOMETER" model

Methodology published by *Sandradewi et al.* (EST, 2008) and reported in Favez (AE 2009; ACP 2010), Sciare et al. (JGR 2011)

The main concept of this model is that wood burning is strongly absorbing in the UV

Wood burning absorbs 4 times more in the UV compared to near-IR

Magee Scientific Aethalometer AE31

This instrument provides real-time (5-min) measurements of black carbon from near UV to near IR

NEW TECHNIQUES TO CHARACTERIZE WOOD BURNING AEROSOLS Approach #2: The "AETHALOMETER" model

- 1. Alone (only Aethalometer) provides real-time Black Carbon from wood burning & fossil fuel (BC_{wb} & BC_{ff})
- 2. With complementary OC (or OM) measurement it provides also real-time organic concentrations of wood burning, fossil fuel, and residual)

Advantage

Approach which relies on a field instruments designed for unattended (real-time) long term observations

Disadvantage

Recent technique which still requires more studies against other approaches in various environments

Approach #3: The "PMF" model

Real-time Aerosol chemistry provided by AMS (incl. OM)

Statistical data processing (Positive Matrix Factorization, PMF) Of organic fragments detected by AMS

OM wood burning (pBBOA-like)

Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France)

O. Favez^{1,*}, I. El Haddad², C. Piot^{3,4}, A. Boréave¹, E. Abidi², N. Marchand², J.-L. Jaffrezo³, J.-L. Besombes⁴, M.-B. Personnaz⁵, J. Sciare⁶, H. Wortham², C. George¹, and B. D'Anna¹

 $OM_{wood burning}$ (approach#1 – levoglucosan) = 68% of OM

 $OM_{wood burning}$ (approach#2 – Aethalometer) = 61% of OM

→ Quite similar results

 $OM_{wood burning}$ (approach#3 – AMS & PMF) = 37% of OM

 Missing fraction of wood burning (mis attribution of wood burning to SOA) As recently proposed by *Donahue et al. (2009)*

Validation of the "AETHALOMER" model / Field experiments in the region of Paris

Comparison between BC_{fossil fuel} and fossil fuel tracers

Good ability of the aethalometer to discriminate between wood burning & fossil fuel BC

Validation of the "AETHALOMER" model / Field experiments in the region of Paris

Comparison with the mono-tracer approach (levoglucosan)

Sciare et al., (2011), AMT, in preparation

+ Intensive Field studies of wood burning aerosols in Paris region

INTENSIVE FIELD STUDIES ON WOOD BURNING AEROSOLS IN PARIS (FRANCE)

Paris (center) - winter 2005

Evidence for a significant contribution of wood burning aerosols to PM_{2.5} during the winter season in Paris, France

Olivier Favez^{a,*}, Hélène Cachier^a, Jean Sciare^a, Roland Sarda-Estève^a, Laurent Martinon^b

Magee Scientific Aethalometer AE31

Absorption Agnström exponent > $1.1 \Rightarrow$ Influence of wood burning

Absorption Agnström exponent of $1-1.1 \Rightarrow$ combustion aerosols dominated by fossil fuel (traffic)

Finally, a rough estimate of the contribution of wood burning carbonaceous aerosols to $PM_{2.5}$ could be achieved. This contribution was found to be as high as $20 \pm 10\%$ on average at the Paris background site investigated here.(ndlr : winter 2005)

INTENSIVE FIELD STUDIES ON WOOD BURNING AEROSOLS IN PARIS (FRANCE)

Gif/Yvette (surburban area) / 20km South of Paris – winter 2009

INTENSIVE FIELD STUDIES ON WOOD BURNING AEROSOLS IN PARIS (FRANCE)

Paris (center) - winter 2010

Strong correlation between BC wood burning and the water-soluble fraction of OC (i.e. WSOC).

(about 65% of OC is water-soluble during this study)

+ Spatial and Temporal distribution of wood burning aerosols in Paris

AETHALOMETER model:

Daily concentrations of BC_{wb} & BC_{ff} (July 2009 - April 2011)

Winter 2009-2010 : (Oct. - Apr.) [BC_{wb}] = 0.20 µgC/m³

Winter 2010-2011 : (Oct. - Apr.) [BC_{wb}] = 0.20 µgC/m³

No significant temporality in fossil fuel emissions (traffic) with rather stable concentrations over the 2year period

AETHALOMER model:

Seasonal (monthly mean) variations of BC_{wb} & BC_{ff}

Strong seasonal variations with significant amount of wood burning from October to April (<u>7 months</u>)

No clear seasonal variations.

High concentrations during the fall period (traffic & met. Conditions)

Low concentrations during the summer period (traffic & met conditions)

AETHALOMER model Seasonal (monthly mean) variations of PM_{wb} & PM_{ff}

* BC_{wb}/PM_{wb} = 0.06; & BC_{ff}/PM_{ff} =0.4; Aethalometer model, Sciare et al., JGR, 2011, under review

Comparison between the "Aethalomer" model with the mono-tracer (levoglucosan) approach: A seasonal perspective

As observed previously from time-limited intercomparisons, the 2 approaches are well correlated over the whole winter period

On a yearly basis $PM_{wood \ burning} = 2.33 \mu g/m^3$ (Aethalomer model) $PM_{wood \ burning} = 2.20 \mu g/m^3$ (Levoglucosan approach)

The mono-tracer (levoglucosan) approach: A spatial perspective

Source Identification and Apportionment of $PM_{2.5}$ and PM_{10} from the urban background of Paris by the Positive Matrix Factorization approach

Receptor Models / Principle

- Aim: Identify and apportion sources of airborne PM in the atmosphere
- $\boldsymbol{\cdot}$ Methods based on the statistical evaluation of PM chemical data acquired at receptor sites
- Different methods:

M. Viana et al. / Aerosol Science 39 (2008) 827-849

SPATIAL & TEMPORAL CONTRIBUTION OF WOOD BURNING IN PM IN PARIS Source profiles of $PM_{2.5}$ and PM_{10} from the urban background of Paris Methodology

- Use of the PMF_{3.0} model from EPA (Multilinear Engine method)
- \cdot Database: PM_{\rm 2.5} and PM_{\rm 10} from the urban background of Paris from 11/09/2009 to 27/03/2010
- Chemical species studied:

EC, POM, Cl⁻, NO₃⁻, SO₄²⁻, Na⁺, NH₄⁺, K⁺, Mg²⁺, Fe, Cu, V, Ni, Levoglucosan for PM_{10} and $PM_{2.5}$. Ca²⁺ for PM_{10} only.

- Number of factor choosen in order to have:
 - mathematically correct results
 - chemically meaningful results
- Numerous PMF runs lead to the choice of:
 - 5 factors for $PM_{2.5}$
 - 6 factors for PM_{10}

Source: Bruinen de Bruin, 2006

6	Vood burning	K, volatile C, elemental C, levoglucosane	Huang et al., 1994; Janssen et al., 1997; Ojanen et al., 1998; Chan et al., 1991

Average contribution from 11/09/2009 to 27/03/2010

+ New and promising techniques developed recently to estimate in near real-time wood burning aerosols (AMS, Aethalometer, ...). But, no "perfect" tool to quantify them.

In the region of Paris:

- Different approaches (PMF $_3$, Aethalometer model, mono-tracer "levoglucosan" approach) used in Paris leading to consistent estimates of PM wood burning

- Significant temporal variations of wood burning having a significant impact on PM during 7 months of a year

- Large & homogeneous signal of wood burning in the region of Paris making difficult to evaluate local-to-advected contributions

+ Implementation of a regional (EU FP7 ACTRIS network) supersite for long term observation of PM sources (incl. biomass burning) \rightarrow End of 2011

+ Construction of a "Black Carbon network" (~ 10 to 15 stations) in Great Paris & data assimilation leading to realistic maps of BC from traffic and wood burning

 \rightarrow Beginning of 2012

+ Expected spatial changes in BC (traffic) concentrations in Paris through the implementation of a "Low Emission Zone" in Paris city \rightarrow Beginning of 2013

THANKS FOR YOUR ATTENTION

