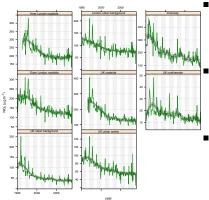
NO_x and NO₂ concentrations, trends and sources

David Carslaw

London Air Quality Network Seminar 2011 1st July 2011

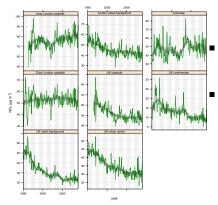


Outline

- **1** Trends in ambient measurements of NO_x and NO_2
- **2** Vehicle emissions of NO_x and NO_2
- **3 Concluding remarks**

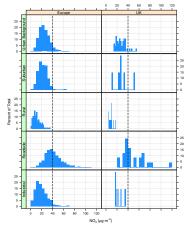
- **1** Trends in ambient measurements of NO_x and NO_2
- How have NO_x and NO₂ concentrations changed in the UK over the past decade or so?
- How do these trends compare with Europe?
- Estimated trends in primary NO₂ emissions derived from ambient measurements
- $\Rightarrow\,$ What conclusions can be drawn from this information?

\mathbf{NO}_x trends across the UK

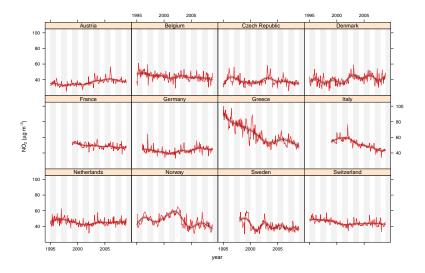


Similar patterns observed at most site types — levelling off of NO_x concentrations

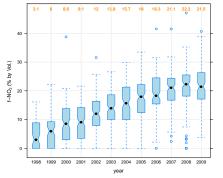
Reduction in concentration from late 1990s; weakly decreasing since 2002/4–2010


- Median changes 2002–2009:
 - –0.6 %/year in inner London
 - –1.7 %/year in outer London
 - −1.4 %/year in rest of UK

NO₂ trends across the UK

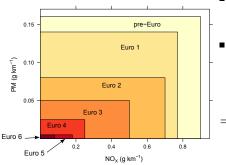


- NO₂ concentrations have increased at some sites
- Median changes 2002–2009:
 - —0.5 %/year in inner London
 - –0.8 %/year in outer London
 - −0.6 %/year in rest of UK


How does the UK compare with the rest of Europe?

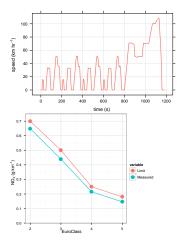
- Analysis of hourly data from 2,728 sites in Europe from *Airbase*
- Similar proportion of sites in 2008 exceed annual mean LV of 40 µg m⁻³
 - Also evidence of stabilising concentrations of NO₂ for most countries

Primary NO₂ trends — London



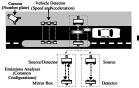
- The ratio of NO₂:NO_x has clearly increased over the past decade
- Values today in London are around 20–25% by vol.
- ⇒ Higher in London than the rest of the UK — on average

2 Vehicle emissions of NO_x and NO_2

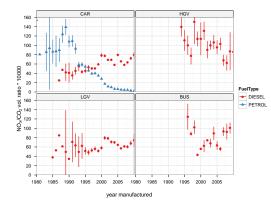

- What we expected to happen
- Recent evidence from vehicle emission remote sensing
- A closer look at diesel cars

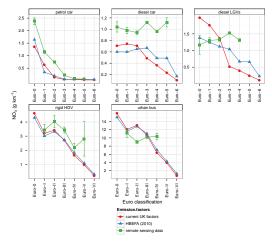
Vehicle emissions legislation in Europe

- Approximate limits of NO_x and PM — for diesel cars
- \approx order of magnitude reduction in NO_x g km⁻¹ emissions since early 1990s
- ⇒ Expect considerable effect on ambient concentrations of NO_x and NO₂

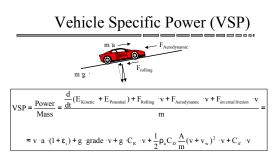

Vehicle emissions legislation — test cycles

- Vehicles driven over a standard test cycle and emissions measured and expressed in g km⁻¹
- Each new model car produced by a manufacturer is tested in this way
- Thousands of vehicles diesel cars in this case


Vehicle emissions remote sensing

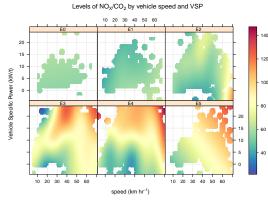

- Remote sensing
 - Infrared/UV beam across road using ESP Remote Sensing Detector (RSD-4600)
 - · Individual vehicle exhausts measured
 - Measures ratios of NO, CO, HC, "smoke" to CO₂ i.e fuel-based emission factors
 - Some practical limitations
 - Several campaigns from 2008–2010 in 5 urban areas
 - About 72,000 vehicles sampled
 - Number plates matched by CarweB (http://www.carwebuk.co.uk/)

NO_x/CO₂ ratio by year


- NO_x emissions from petrol cars have decreased by ≈96% since the early 1990s
- Diesel car emissions have increased, or at best been stable for the past 25 years or so
- Possible to see the effects of different Euro class legislation

Derived vehicle emission factors for NO $_x$ (g km $^{-1}$)

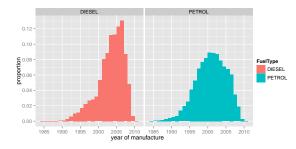
- Some important differences between the different emission factors
- Reveals important areas of disagreement


Vehicle specific power as an emissions metric¹

- Relates to actual forces a vehicle must overcome
- Vehicle speed alone is not a good indicator of emissions
- VSP is the basis of the US-EPA emissions calculations for vehicles

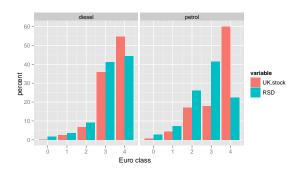
¹Jiménez, J., McClintock, P., McRae, G., Nelson, D., Zahniser, M., 1999. Vehicle Specific Power: A Useful Parameter for Remote Sensing and Emission Studies . 9th CRC On-Road Vehicle Emissions Workshop San Diego, April 21st 1999

Effect of vehicle specific power on emissions of NO_x



- Clear effect for diesel cars by emissions
 - technology
- Euro 3 to Euro 5 emit much higher levels of NO_x when the engine is

under load


 Diesel cars have got more powerful over time (use of turbo-charging)

Have we got the fleet right for inventories?

- Inventories do not used "observed fleets"
- Remote sensing data captures mileage-weighted fleet statistics

Have we got the fleet right for inventories?

- Inventories do not used "observed fleets"
- Remote sensing data captures mileage-weighted fleet statistics
- ⇒ In other words: more higher emitting petrol cars than we thought (Euro 1/2) and increased use of modern diesel cars which are high NO_x and NO₂ emitters

3 Concluding remarks

- Trends in NO_x and NO₂ have levelled off in the past 6–8 years
 - UK inventories are in clear disagreement with ambient trends
 - The situation in much of the rest of Europe looks similar
- Vehicle emission remote sensing data is extremely valuable
 - Key has been linking with comprehensive vehicle information databases (CarweB)
 - Can re-calculate NO_x emissions and compare with inventories
 - Light duty vehicle emissions seem to account for most of the disagreement

- Increased power of diesel cars over past 20 years is important
- Future trends in NO₂
 - Turn over in vehicle stock will be important e.g. number of older petrol cars on the road
 - The emissions performance of Euro 6/VI is of critical importance and evidence of 'real-world' performance is key

- Draft report available at http://uk-air.defra.gov.uk/library/ and revised version with Defra
 - Covers far more information than presented here along with implications for measures and policy development

Acknowledgements

This work has relied on significant input from others:

Sean Beevers, Emily Westmoreland and Martin Williams (ERG, King's College London)

James Tate (ITS, University of Leeds)

Tim Murrells, Yvonne Li, John Stedman and Andrew Kent (AEA)

Enviro Technology Services plc (for provision of some of the remote sensing data)

Thank you for your attention!!

