

University of London

Measurement ratification

Gary Fuller

King's College London

5th July 2007

Contents

- What is ratification?
- Sources of information
- How is it done?
 Fictional case study
 A bit of advanced stuff

What is ratification?

- Retrospective and final calculation of measurement data set
- Establishes and uses calibration and service history
- Connects each measurement to a traceable calibration
- Ensures traceability of final measurement dataset to national metrological standards

What is ratification?

Important point:

- QA/QC procedures do not ensure that the measurement generated by the analyser is the final and most 'accurate' measurement.
- Instead we
 - Ensure best possible functioning of the analyser
 - Collection of extensive calibration information

Sources of information

Local Air Quality Management Guidance TG03

Minor reference in the AURN LSO manual

Minor reference in CEN Standards

- Eg EN 14211 is 91 pages and only reference to measurement processing is
- "Measured drift in the analyser's response that is less than the action criteria shall be corrected for in data processing and not by physical adjustment of the analyser."

Ambient measurement = SF(Analyser measurement – Zero)

Where SF = Traceable calibration gas / (Span response – zero)

Illustrated by fictional case study

- Only show work done on the service and calibration history
- Only focus on the span factor

Simple example and only part of the process...

- Same process with zero measurements
 - Changes each span factor
- Exclude non ambient data
 - Review decisions made at validation
 - Exclude further measurements
 - Restored measurements excluded during validation
- Apply to the measurements
 - (do all this at 15 min mean resolution in practice)

Examination of final data set to

- NO2 response during incidents?
- Compare other sites?
- Compare other pollutants?

Some more advanced stuff

- NOX, NO and NO2
 - NOX and NO done separately then look at NO2
- O3
 - Only calibrated at audit, service and repair
 - Traceablity of ESU photometers?
- PM10
 - Little calibration information
 - Filter change artefacts eg noise

More complex cylinder problems eg drift and NO oxidation

Some more advanced stuff When did a fault occur?

Eg fault found at 6 monthly audit but should we delete 6 months measurements?

-Can it be determined from calibration performance?

-Traced to service / repair?

Some more advanced stuff

Cumulative Sum (CUSUM)

Page (1954) for industrial process control

Other applications include:

-Epidemiology

-Efficacy of treatments

-Change points in air quality measurements

-Barratt et al 2006

-Carslaw et al 2006

Some more advanced stuff -CUSUM

$$z_i = \frac{x_i - x}{\hat{\sigma}_x}$$

is the observed value at time *i*, $\frac{x_i}{x}$

- is the desired process mean
- $\hat{\sigma}_{r}$ is an estimate of the standard deviation of the observed values.

These are accumulated over time to compute the CUSUM, S, at each time point *i*

 $S_i = S_{i-1} + z_i$ where $S_0 = 0$

Separate application to positive and negative deviations, with a 'slackness' factor k

$$S_{\text{Hi}} = \max[0, (z_i-k) + S_{\text{Hi-1}}]$$

 $S_{Li} = min[0, (z_i+k)+S_{Li-1}]$

Some more advanced stuff – a knotty problem at Watford

During 2005 PM₁₀ improved the roadside in Watford

-It got so good that the annual mean fell below nearby background sites!

-No maintenance and service problems

-Sustained perfect audit results

Some more advanced stuff – a knotty problem at Watford

Some more advanced stuff

Some more advanced stuff – a knotty problem at Watford

CUSUM identified a change at service

Through investigation by new ESU revealed an accidental entry of 6.196 instead of 3 as the TEOM offset by previous ESU

-TEOM software was corrected

-Measurements were recalculated to remove the offset error

Some more advanced stuff – a knotty problem at Watford – fixed!

Some more advanced stuff

– a knotty problem at Watford – fixed!

What difference does it make? Data capture

50 40 30 20 10 Change data capture 0 Kens and Chel Kens and Chel Kens and Chel H'smith and H'smith and ity o Valthe -20 -30 -40 -50 -60

What difference does it make? Annual mean NO2

What difference does it make? Hours > 105 ppb / 200 ugm3

Summary

- What is ratification?
 - Retrospective
 - Uses calibration and service history
- How is it done
 - Fictional case study
 - A bit of advanced stuff