MODELLING London's Air

MRC-PHE
Centre for Environment & Health

David Dajnak

Environmental Research Group King's College London

Air Quality Modelling at King's

- □LAEI 2016
- ☐Post LAEI 2016
- ☐ London policies and Climate change
- ☐ Modelling for health research
- ☐ Human exposure modelling
- ☐ Future developments

Overview

Exposure/Policy

Policy

Community engagement www.breatheLondon.org

Model development

London Laboratory

PM composition

Measurement

5 year funding total: £11,299,892

NIHR, NERC, MRC, ESA, HEI, NCAS, DEFRA, GLA, TfL, LA's, HPA, IOSH and NGO's.

Post Docs/Academics: 11 - PhDs: 14 - Papers: 150

Air quality and health

Health research

http://www.londonair.org.uk/londonAir/Default.aspx

LAEI 2016

New LAEI 2016

All sources have been updated

Main highlights (2013 versus 2016):

- Industrial/commercial oil: NOx doubled 1,500 to 2,900 tonnes
- Domestic Gas: NOx halved 6,600 to 2,900 tonnes
- Construction/demolition dust: PM₁₀ large increase 65 to 2,376 tonnes

Main King's contribution

- Updated road transport and aviation sources
- NEW source: commercial catering (cooking) emissions
- NEW source: domestic wood burning (biomass) emissions
- NEW AQ background concentration approach (corrected for biomass)
- NEW AQ road dispersion approach
- NEW AQ shipping dispersion approach

Commercial catering (cooking) emissions sources

PM measurement at

- Marylebone Rd (1.2-2.4 μg m⁻³)
- North Ken (0.3-0.8 μg m⁻³)

Cooking emissions sources estimated to produce **548 tonnes of PM**

to produce **340 tolliles of** Fi

Spatial representation:

Commercial premises filtered for restaurant and Take Away combined with Employment for food industry

Predicted concentration:

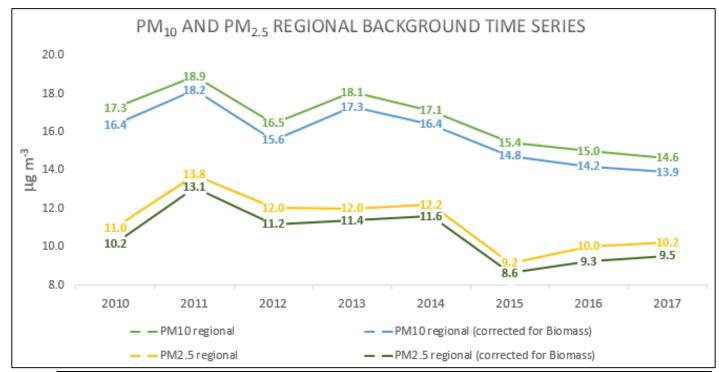
1.45 MY1 and 0.66 μg m⁻³ KC1

Domestic wood burning (biomass) emissions sources

- PM meas at rural and urban sites
- Rural concentration 0.39 µg m⁻³
- Urban contribution at KC1
- $0.70/0.54/0.45 \ \mu g \ m^{-3} (2010/13/16)$
- Biomass emissions estimated
 1216/938/781 t of PM (2010/13/16)

Spatial representation:

Property data filtered by age (pre 1964)


Levoglucosan transect (proportional to biomass PM)

Regional and Rural Background Concentrations

Regional background PM₁₀/PM_{2.5}:

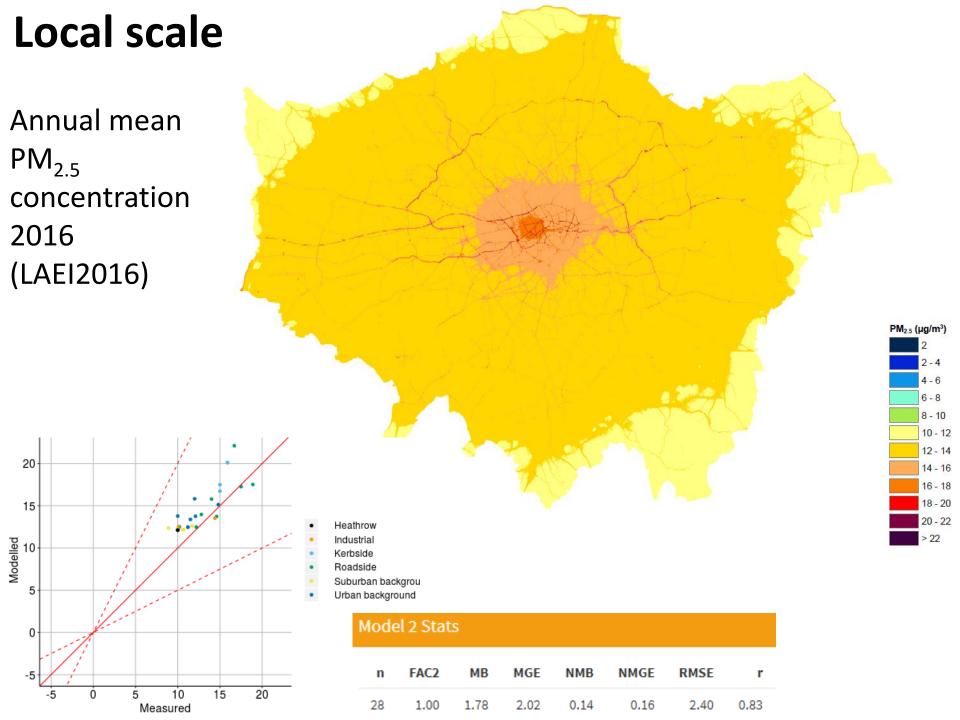
NEW: Correction for wood burning

Road dispersion

London building heights from the EU Copernicus project (10x10m)

Extracting heights using road buffers and widths using lanes, pavements, hard shoulder and central reservations

All road links were **classified** into 200+ road types by heights, width, orientation


Dispersion Kernels using

 Dispersion of shipping emissions: points every
 20m by source category

Post LAEI 2016

MRC-PHE
Centre for Environment & Health

Imperial College London

Non-exhaust emissions (work in progress)

Hourly traffic data (speed, volume, class) ANPR data

Sources of vehicle PM emissions in LAEI 2016: Based on Harrison (2012) at one road side increment (month long campaigns). **They are uncertain!!**

	LDV	HDV	% total
PM10 Brake	79	21	41
PM10 Exhaust	83	17	12
PM10 Resuspension	20	80	36
PM10 Tyre	84	16	10
PM25 Brake	79	21	45
PM25 Exhaust	83	17	31
PM25 Resuspension	22	78	4
PM25 Tyre	84	16	20
		_	

Brake wear chemical composition

Roadside increment: Marylebone Rd vs Honor Oak Park

PM hourly data (size range, number and Chemical composition

Zinc concentrations at Marylebone Rd (westbound traffic + WD 180:270)

Tyre wear (**Zn**), break wear (Fe, **Cu**, Pb, Ba), and resuspension of road dust (SiO₂, Al₂O₃, Fe₂O₃, Ca)

Copper concentrations at Marylebone Rd (westbound traffic + WD 180:270

London policies and Climate change

AQ modelling for London policy

- ☐ Congestion charging Zone (CCZ)
- ☐ Western Extension Zone (WEZ)
- ☐ Remove WEZ
- □ Low Emissions Zones (LEZ)
- ☐ Mayor's Air Quality Strategy (MAQS)
- □Ultra Low Emissions Zones (ULEZ): 2019 > 2020 > 2021
- □ London Environment Strategy (LES): 2025 > 2030
- □LES +: 2040 > 2050

The Co-Impacts of Climate Change Policies on

Air Pollution and Health

DEFRA STAGE 1

- Europe (latest agreed international target)
- UK (following DEFRA's Central Plus scenario: Maximum Technology Feasible emission estimate)
- New 2030 PM_{2.5} UK levels

DEFRA STAGE 2

Modelling for Health research

Previous model applications

Health impacts of Traffic emissions in London – TRAFFIC (NERC/MRC) Link AQ model to epidemiology research found that air pollution adversely

- Reduce Lung function in children and young adults
- Increases the incidence of stroke and influences survival after stroke
- Association with respiratory and cardiovascular mortality
- Adverse effects on foetal growth during pregnancy
- Mental Health (incidence of dementia)

Health impacts assessments in London – air pollution Famously quoted 9,500 premature death and £3.7 billion economic cost

Current/future model applications

- **APEX -** Create person-centric Exposure model reflecting the Air that people breath Using New sensor, merging advanced models, augmented policy (choice /behaviour)
- **DREAM** Identify DNA modification in children/adult genes exposed to pollution Using high resolution models, range of chemicals, accelerated biological aging
- **CLUE II** Investigate link between impaired cognitive development and noise/AQ Using in/outdoor exposure monitoring 6,000 children, biomarkers, Hybrid/noise model
- **CHILL** Study ULEZ impact on children lung growth, 2ry outcome, health equity Using bioresource of primary children (IN/OUT ULEZ), monitor/model AQ
- Micro-plastics in atmosphere

New environmental challenge
Indoor and outdoor air sampling
Potential for human exposure in the airway if ≤PM₁₀
Potential toxicity of microplastics in pulmonary systems

ems

Presented to the second of the second o

Human exposure modelling

Old 'static' exposure

Versus

Hybrid exposure model

http://www.londonair.org.uk/research /Modelling-Air/custom/index.html

Outdoor air quality

CMAQ-urban air quality model (outdoor concentrations)

Reference: Smith et al., 2016. The London Hybrid Exposure Model (LHEM): Improving human exposure estimates to NO₂ and PM_{2.5} in an urban setting. ES&T

DOI: 10.1021/acs.est.6b01817

In-vehicle air quality

Micro-environmental modelling: in-vehicle (bus, car, train, tube), cycle, walk, indoors (I/O exchange - J Taylor (UCL))

$$\frac{dC_{in}}{dt} = \lambda_{win}(C_{out} - C_{in}) - n\lambda_{HVAC}C_{in} - V_g\left(\frac{A}{V}\right)C_{in} + \frac{Q}{V}$$

Travelling

London Travel Demand Survey: Trips by transport

mode: Age, gender and socio-economic status

The average LHEM exposure is estimated to be 37% lower for PM_{2.5}, than at the residential address

Hybrid model using people's movement data:
Surveys
Oyster cards
Banking card
Mobile phone

PM_{2.5} mass on the London Underground

Future developments

Satellite air quality modelling — Feasibility study (ESA)
Combining satellite images to process traffic data to develop inventory in UK (London)

Counting vehicles from space

Thanks for your attention...

Thanks to colleagues at ERG

Thanks to Transport for London and the Greater London Authority

Dr David Dajnak - Tel: +44 207 848 4012 - Email: david.dajnak@kcl.ac.uk

King's College London

World Health Organisation Guidelines

Guidelines based upon the best scientific evidence of health impacts and used by other agencies internationally to set their standards

ant	period	iq _{il} int/med	iacentra/factsheets/fs313/en/)	Group 1 review?
SO ₂	10 minute	500 μg m ⁻³	Respiratory system inflammation, irritation of the eyes, exacerbates asthma,	yes
	daily	20 μg m ⁻³	hospital admissions for cardiac disease and mortality on days with high SO ₂	
NO ₂	hourly	200 μg m ⁻³	Symptoms of bronchitis in asthmatic children increase in association with long-	yes
	Annually	40 μg m ⁻³	term exposure to NO ₂ . Reduced lung function growth.	
PM ₁₀	Daily	50 μg m ⁻³	Increased mortality and morbidity, daily and over time. No threshold has been established and the WHO recommends achieving the lowest concentrations of PM possible.	
	Annually	20 μg m ⁻³		
PM _{2.5}	Daily	25 μg m ⁻³		
	Annually	10 μg m ⁻³		
O ₃	8 Hourly	100 μg m ⁻³	Breathing problems, can trigger asthma, reduce lung function and cause lung diseases.	yes

Reviews of evidence: Review of evidence on health aspects of air pollution (REVIHAAP)

 $\frac{http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-aspects-of-air-pollution-revihaap-project-final-technical-report}{\frac{http://www.euro.who.int/en/health-aspects-of-air-pollution-revihaap-project-final-revihaap-project-fi$

Health risks of air pollution in Europe (HRAPIE): http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/health-risks-of-air-pollution-in-europe-hrapie-project.-new-emerging-risks-to-health-from-air-pollution-results-from-the-survey-of-experts

Expert consultation: WHO Guideline updates

http://www.euro.who.int/ data/assets/pdf file/0013/301720/Evidence-future-update-AQGs-mtg-report-Bonn-sept-oct-15.pdf

Legislative background – EU limit values (health)

Pollutant	Averaging period	Limit value	Date of compliance
NO ₂	hourly	200 μg m ⁻³ , not to be exceeded more than 18 times a calendar year	1 st Jan 2010
	Annually	40 μg m ⁻³	1 st Jan 2010
PM ₁₀	Daily	50 μg m ⁻³ , not to be exceeded more than 35 times a calendar year	1 st Jan 2005
	Annually	40 μg m ⁻³	1 st Jan 2005
PM _{2.5}	Annually (stg1/2)	25 μg m ⁻³ /20 μg m ⁻³	1 st Jan 2015/20
	Annually (exp reduction target)	Initial conct 13-18 μg m ^{-3~} 15% reduction	Between 2010 and 2020
O ₃ Target value	Maximum daily 8 hour mean	120 μg m ⁻³ , not to be exceeded on more than 25 days per calendar year, averaged over 3 years	1 st Jan 2010
O ₃ Long term objective	Maximum daily 8 hour mean	120 μg m ⁻³	Not defined

What is King's recipe for mapping London's Air pollution?

Emission sources in London (we use LAEI)

Dispersion Model using hourly meteorological measurements

The model sums together three source categories:

- First, sources outside the model domain (background concentration) For NO_x , we use rural measurements
 - For PM, we use rural and regional sources (secondary PM and natural)
- **Second**, within the model domain, but greater than 500m from a receptor location (London background)
 - All London sources represented as volumes sources
- Third, for those sources within 500m of a receptor location
 Detailed treatment of local road/gas/rail/aircraft sources

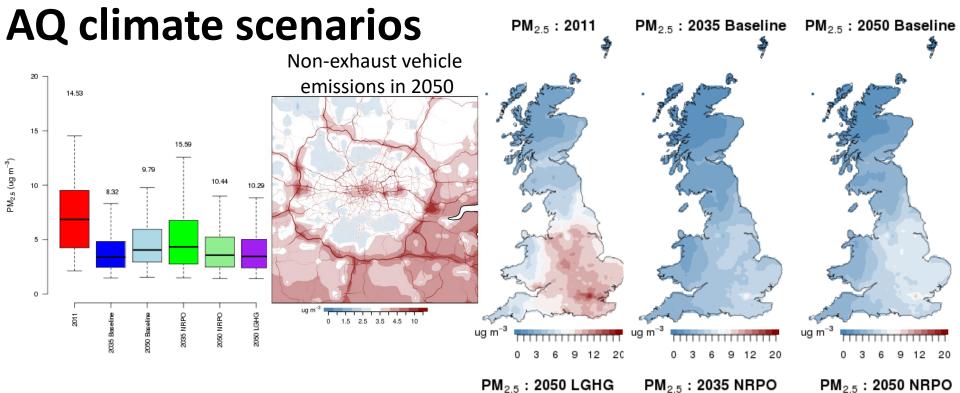
CMAQ-urban outputs

- •US regulatory community model
- Applicable anywhere in the world
- •Multi-scale with nesting capability City to Continental scale
- Fine temporal/spatial grid resolution (20m hourly)
- •Predict future AQ used for policy development
- •Tackle long range issue study foot print of large source
- Multi-pollutant model
- Suitable for source apportionment
- •Allows more policy issues to be tackled

CMAQ-urban performance

☐ CMAQ-UK project for DEFRA

https://uk-air.defra.gov.uk/research/air-quality-modelling?view=cmaq-uk


■ DEFRA Model Intercomparing exercise

https://uk-air.defra.gov.uk/research/air-quality-modelling?view=intercomparison

☐ Air Quality Modelling Evalution International Initiative (AQMEII) Phase 3 http://aqmeii.jrc.ec.europa.eu

Solazzo et al. 2017. Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: multivariable temporal and spatial breakdown, Atmos. Chem. Phys., doi:10.5194/acp-17-3001-2017

NIHR PM results

- PM declined significantly due to cleaner vehicle fleet and NRMM
- Reductions in PM are tempered
- by a 2035 peak in biomass (wood burning)
- by increase in demand for transport leading to increases in non-exhaust PM emissions

