

MRC-PHE Centre for Environment & Health

RC Research Council Imperial College London

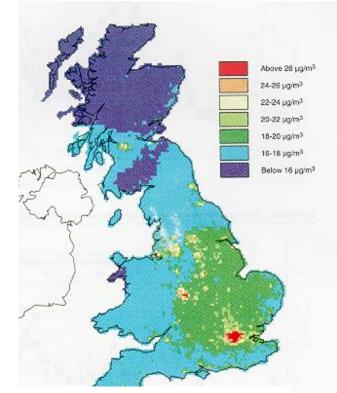
A journey through time – series analyses

Richard Atkinson St George's, University of London

Frontiers in Air Quality Science Programme: 24th June 2014

Contents

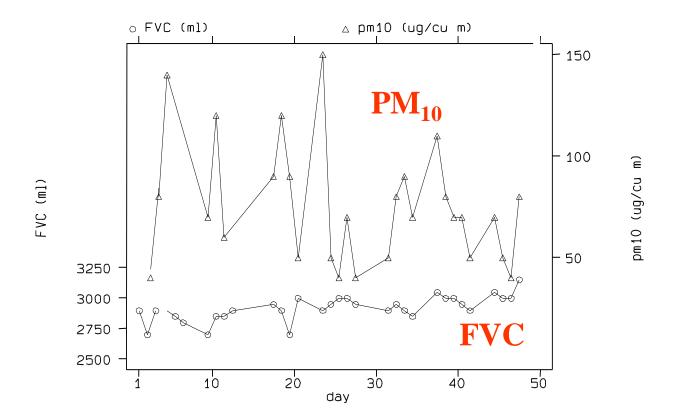
- 1. Concept
- 2. Literature
- 3. Methodological
 - Seasonal control
 - Lag structure
 - Multi-centre studies
- 4. Systematic review
- 5. Traffic study
- 6. Developments



Exposure and effect

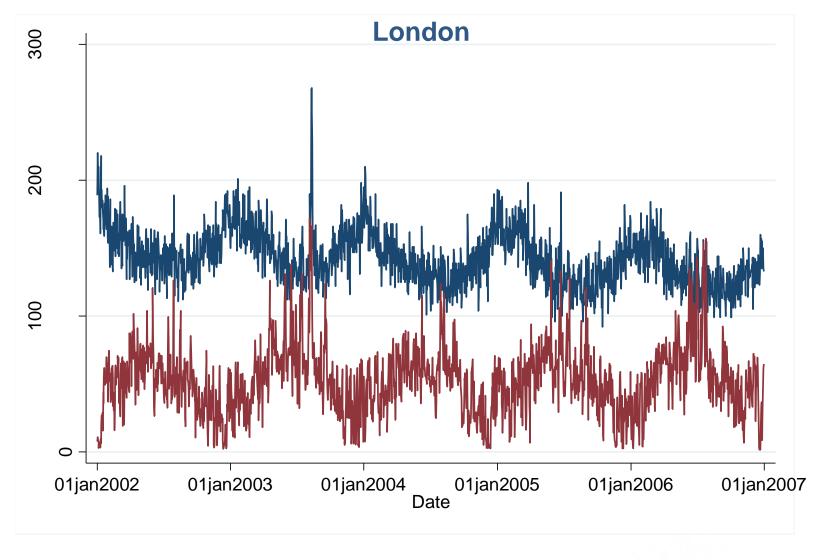
	Short term effect	Long term effect
Short term exposure		
Long term exposure		

LONG-TERM EXPOSURE STUDIES: (1) Spatial correlations (regions, cities, point or line (e.g. road) sources (2) Long term time trends (over years)

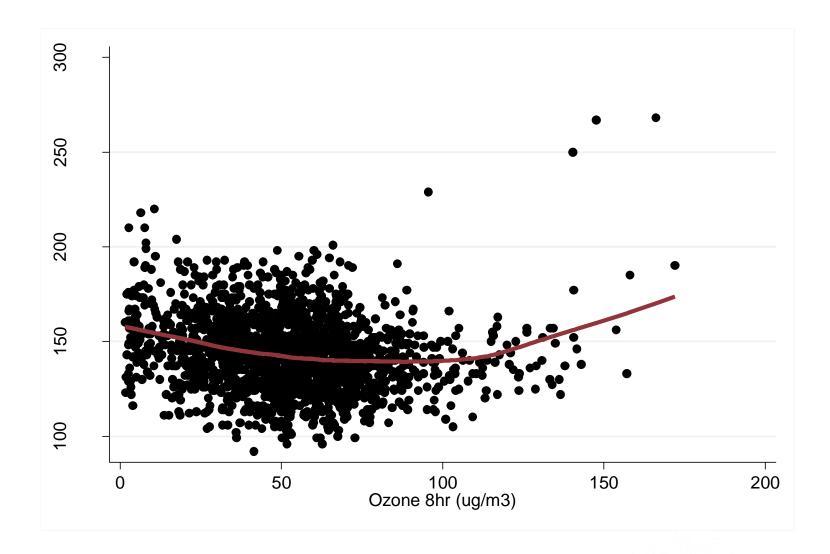

SPATIAL VARIATION IN ANNUAL MEAN PM₁₀ IN UK 1991 mortality or utilisation rates (ecological studies)

prevalence (crosssectional studies)

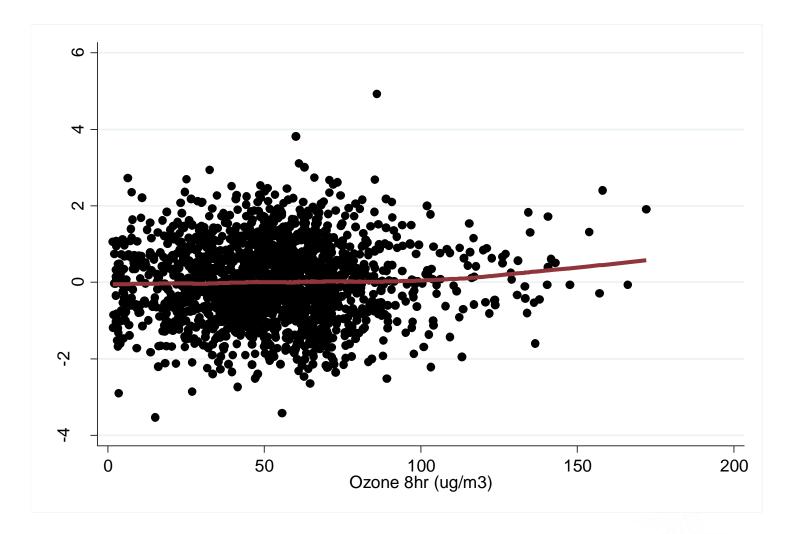
incidence (cohort studies)


St. George's University of London

Short-term exposure studies - Panel



FVC and PM₁₀ daily over 46 days Surrey UK, June 1994 (Scarlett et al 1996)


Short-term exposure studies – Ecological

St George's Wivesity of London

Sit GeOrges University of London

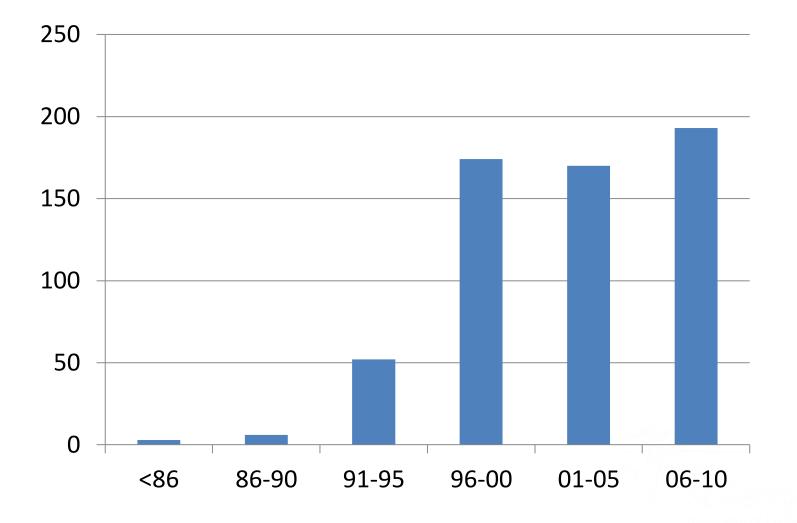
RR=1.0025 per 10 µg/m³

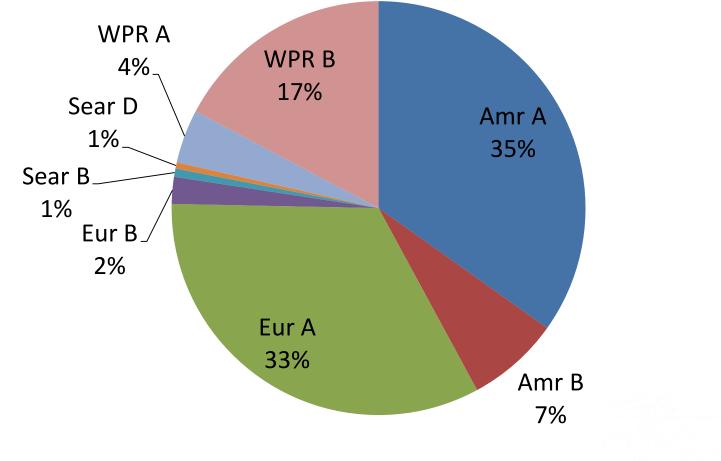
University of London

Contents

1. Concept

2. Literature


- 3. Methodological
 - Seasonal control
 - Lag structure
 - Multi-centre studies
- 4. Systematic review
- 5. Traffic study
- 6. Developments


Air Pollution Epidemiology Database

- >600 studies since 1980s
- > 21,000 effect estimates (protocol)
- 470 single-city studies
- 141 multi-city studies
- Mortality (52%) / Admissions (33%) / Other (15%)
- Particles (PM10, PM2.5, BS, BC etc.)
- Gases (NO2, O3, SO2, CO)
- Elemental composition

published studies by lustrum

Studies by WHO Region

SIL GEORGES University of London

Policy interface

DEPARTMENT OF HEALTH

Committee on the Medical Effects of Air Pollutants

Quantification of the Effects of Air Pollution on Health in the United Kingdom

Review of evidence on health aspects of air pollution – REVIHAAP Project

Technical Report

This publication arises from the project REVIHAAP and has received funding from the European Union.

HEALTH ASPECTS

RESULTS FROM THE WHO PROJECT "SYSTEMATIC REVIEW OF HEALTH ASPECTS OF AIR POLLUTION IN EUROPE"

SPECIAL REPORT 18

۲

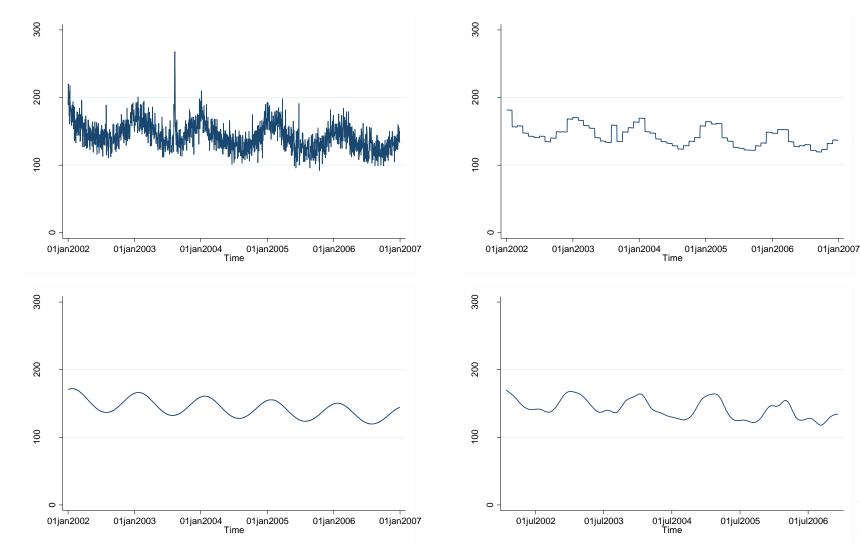
HEALTH EFFECTS INSTITUTE November 2010

Outdoor Air Pollution and Health in the Developing Countries of Asia: A Comprehensive Review

HEI International Scientific Oversight Committee

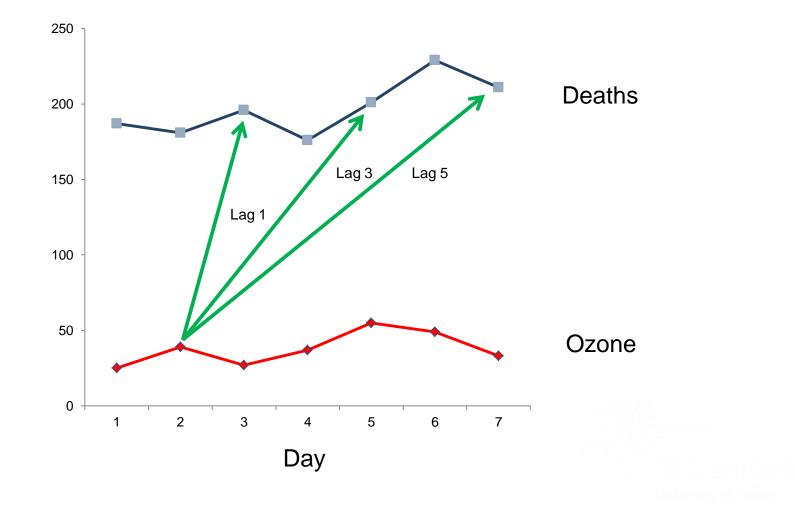
St. Geolfge's University of London

Contents


1. Concept

2. Literature

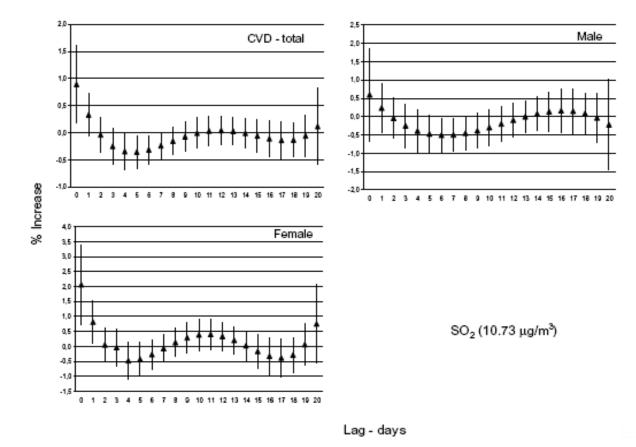
- 3. Methodological
 - Seasonal control
 - Lag structure
 - Multi-centre studies
- 4. Systematic review
- 5. Traffic study
- 6. Developments

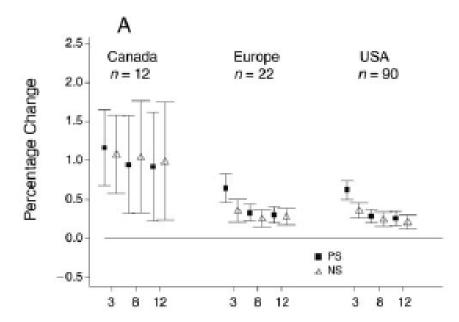

Methodological Developments Seasonal control

Methodological Developments Lag structure

Methodological Developments Lag structure

Methodological Developments Lag structure




Figure 1 - Lag structure of the effects of an interquartile range increase in SO₂ (10.73 μ g/m³) on total, male, and female cardiovascular disease (CVD) hospital admissions. São Paulo, Brazil, 1996-2001.

Methodological Developments Multi-city studies

- Multiple locations included
- Common approach
 - Exposure
 - Statistical models
- Increased power
- Sources of heterogeneity
- APHENA: 90 US cities, 12 Canadian cities, 32 European cities.

APHENA Study

PM₁₀ and all cause mortality

Contents

- 1. Concept
- 2. Literature
- 3. Methodological
- 4. Seasonal control
 - Lag structure
 - Multi-centre studies
- 5. Systematic review
- 6. Traffic study
- 7. Developments

Contents

- 1. Concept
- 2. Literature
- 3. Methodological
- 4. Seasonal control
 - Lag structure
 - Multi-centre studies
- 5. Systematic review
- 6. Traffic study
- 7. Developments

Traffic Pollution and Health in London

- Research Council Environmental Exposure
 and Health Initiative
- NERC/MRC/DOH £2m
- KCL, ICL, SGUL, LSHTM, UoB, UoA
- To describe and understand the patterns of exposure of the population to traffic pollution and their relationships to health

TPHL – Work Packages

1. PM oxidative potential and exploitation of the NERC ClearfLo project

2. Modelling of population exposure to traffic pollution

3. Epidemiological studies of health effects of long-term exposure to traffic pollution

TPHL – Time series (WP1.3)

- SGUL, University of Athens
- Aim: "...to investigate the relative effects of different particle metrics and components, including oxidative potential on daily mortality and hospital admissions for cardiorespiratory conditions".
- Clearflo & Defra data sets
- London, 2011-2012

TPHL – Pollutant Metrics

- PM10, PM2.5, PM10-2.5
- BC/EC/OC
- PNC
- Elemental composition
- PMF
- Background/Urban increments
- Oxidative Potential
- Gases

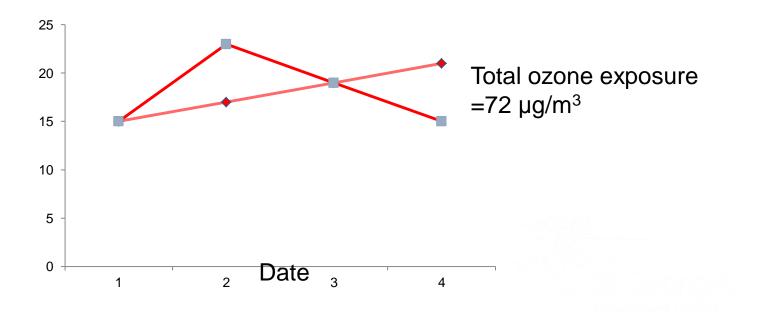
Challenges

- 100+ pollutant metrics
- x 2 outcomes x 3 disease x (? age groups)
- x 2 seasons x ? lags x ? multi-pollutants
- = LOT OF MODELS
- = BIG HEADACHE
- Characterise markers of traffic sources
- A priori list for epidemiological analyses

Rationale	Metric
Source	
Traffic - general	NOX
Traffic – general	PMF Traffic source
	- Composition
	- Particle size
Traffic - exhaust – Diesel	BC/EC in PM _{2.5}
Traffic - exhaust – Petrol	CO
Traffic - non-exhaust – Brake	Cu
Traffic - non-exhaust – Tyre	Zn
Traffic - non-exhaust - Re-suspension	AI

Rationale	Metric
Regulated	
Particles	PM ₁₀
Particles	PM _{2.5}
Gaseous	NO ₂
Gaseous	SO ₂
Gaseous	O ₃
Novel	
Oxidative Potential	OP1A, OP1G, OP1T
	OP2A, OP2G, OP2T
Wish List	
Heavy fuel oil combustion	Ni, V
Regional secondary particles	SO4, NO3
Carbon source apportionment	

SIL GEORGES University of London


Contents

- 1. Concept
- 2. Literature
- 3. Methodological
 - Seasonal control
 - Lag structure
 - Multi-centre studies
- 4. Systematic review
- 5. Traffic study
- 6. Developments

Delta study

- Nuredin Mohammed, Jon Ayres, Hubert Lam (UoB)
- Hypothesis: delta not concentration
- Pattern analysis

AIR POLLUTION AND WEATHER-RELATED HEALTH IMPACTS: METHODOLOGICAL STUDY BASED ON SPATIO-TEMPORALLY DISAGGREGATED MULTI-POLLUTANT MODELS FOR PRESENT-DAY AND FUTURE (AWESOME)

- PI Paul Wilkinson, LSHTM, UoE, SGUL
- Modelled <u>daily</u> pollution concentrations at 5x5km spatial resolution
- National coverage

Comparative evaluation of Spatio-Temporal Exposure Assessment Methods for estimating the health effects of air pollution (STEAM)

- MRC Methodology panel (PI: Katsouyanni)
- KCL, SGUL, UOA, Harvard
- Fine spatial and temporal resolution
- Range of modelling techniques/data sources
- Simulation
- Integration of long and short term exposures and long and short term health effects

In conclusion:

- Extensive literature
- Greater geographical coverage
- Ever increasing sophistication
- Ever more searching (policy related) questions
- Modelling developments

MRC-PHE Centre for Environment & Health

MRC

Imperial College London

Thank you

Richard Atkinson St George's, University of London atkinson@sgul.ac.uk

Frontiers in Air Quality Science Programme: 24th June 2014