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Exposure Assignments In
Chronic Cohort Studies

Growing availability of Atmospheric
Chemistry, Remote Sensing, and Hybrid
models important innovations for the
study of long-term health effects

Few studies have compared the different
model types in health effects assessment

Raises questions about validity and
comparability of the results




Research Objective

= [0 compare the effects of seven different
PM, - exposure estimates on survival in
the United States based on the American
Cancer Society Cohort Cancer Prevention
IT Study




Exposure Models Evaluated

U.S. EPA Hierarchical Bayesian model
(Atmospheric Chem model fused to
ground ~ 36 km resolution)

Remote sensing (RS) model (van
Donkalaar et al. 2010, 2013 ~ 9.8 km
resolution — 3 models)

Bayesian Maximum Entropy (BME) Space-
time kriging models (~ 9.8 km resolution)

Hybrid models (Land Use Regression BME
~ 100 m resolution)



U.S. EPA Hierarchical Bayesian

Model ‘CMAQ fused to Ground)
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PM, - Predictions from Integrated Remote
Sensing-Meteorology Model

Exposurehassessment fdr estlmatlon of the global burden of
disease attributable to outdoor air pollution
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Relate satellite-based retrievals of aerosol optical depth

(AOD) to PM, ; using a global chemical transport model
(R.Martin, Pl)
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BME Spatiotemporal
Exposure Model (Lee et al. 2012)
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Hybrid Models based on Land Use
Regression/Kriging/Remote Sensing
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Objective 1: Developing the PM, - Model

1. Assemble
comprehensive

database of all
available PM2.5
monitors

/. Take monthly
residuals from model
and fit with a
Bayesian Maximum
Entropy (BME)
model

2. Process into
monthly averages
with 50%

completeness
criteria

6. Select land use
regression (LUR)
model to represent
mean trend using
Generalized
Estimating Equation

8. Combine
estimates from the
LUR model with the

BME model to
estimate exposures

Sy DERVENaNERISE
and traific estimates

forFall N MeNIteKS 4, Assign remote
SENSINg Model
predictions ofi PM2.S
e all moniters (=10
km = 10rKkm grids)

b

5. Use V-fold' cross-
validation deletion-
substitution
algorithms torselect
significant variables

10. Assign
exposures to
small areas (ACS
subjects, census
9. Cross-validate tracts, zip COdes)

against leave out
sites _/



PM, = Monitoring Locations

Cross Validation

%  Cross-Validation Sites

. Data Points for Modeling

600 Miles




Land Use and Traffic

Comprehensive database of land use and
traffic

Traffic derived from 40 million count
points aligned to the TeleAtlas road
network



Map of Traffic Count Locations

e Traffic Counts
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TORONTO_ID RD1-50km RD2-50km RD3-50km RD1-50200km RD2-50200km RD3-50200km ) ‘
2115 0 0.11 0.025 0 0.275 1.715
2160 0 0 0.275 0 0.405 1.38
" N
—\

TORONTO_ID Coém-100ha Gov/inst-100ha Open/pk/wtr-100ha Resident-100ha Indust/Resource-100ha
2115 0.54 7.0575 0.045 4.8525 0
2160 0 \ 10.32 0 2175 0
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A review and evaluation of intraurban air pollution exposure models
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Monitored pollution values are used as the dependent variable
in a regression model with proximate traffic, land use,
population, and physical geography variables as predictors




Results of the LUR
Regression Modeling Using
Deletion/Substitution/Addition
Selection
(after screening 85 variables)

Lz
Traffic Weights — Vehicle-KM (1000 m)[ 1.06E-04 1.37E-05 7.760 0.00E+00 |7.94E-05( 1.33E-04

Remote Sonsing Green Space - Acres (100 m)
USA- Wi
TMOCSASAY DevelopedLand-Actes (200m)| 0041 | 0006 | 6650 | 000E+00 | 0029 | 0053 |




Predictions: R? Leave out ~ 80%

Ch prediction - LUR with remote sensing W prediction - LUR with remote sensing + BEME
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PM2.5 [ug/m3]
- High : 24.8

- Low: 0
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PM, - surface for BME-LUR model without
remote sensing averaged over study period




PM2.5 [ug/m3]
- High : 22.9

- Low: 0

0 250 500 1,000 km
TR T 1 S S S |

0 15 30 60 km
] |

Los Angeles

0 15 30 60 km
| R |

Chicago

0 1530 60 km
[T (1 | T Atlanta

PM, - surface for BME-LUR model with
remote sensing averaged over study period




Comparing
Health Effects

American Cancer Society subjects enrolled in
1982 (>669,047) geocoded to baseline address

Follow up with mortallt?/ linkage from 1982 to
2004 (105 039 deaths from Circulatory + Diabetic

causes)

Numerous covariate data available to control for
confounding

Control applied for 42 individual (smoking,
occupational exposures, etc) and 8 ecologic
confounders (unemployment poverty, etc.) in
standard and multilevel Cox models



INDIVIDUAL LEVEL COVARIATES:

Tobacco smoke variables:

=

Indicator variable for current cigarette smoker
Indicator variable for pipe or cigar smoker,
Current smoker’ s years smoked,

Current smoker’ s years smoked squared,
Current smoker’ s cigarettes per day,

Current smoker’ s cigarettes per day squared,
Indicator variable for former cigarette smoker,
Former smoker’ s years smoked,

Former smoker’ s years smoked squared,
Former smoker’ s cigarettes per day,

. Former smoker’ s cigarettes per day squared,

Indicator variables for starting smoking before or after age
eighteen,

Number of hours per day exposed to passive cigarette smoke.
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Education variables:
¢Indicator variables for high school completed

and more than high school completed, versus high
school not completed

Marital status variables:
+Indicator variables for “single” and “other”
versus married

+BMI and BMI squared

Alcohol consumption:
+Six variables including indicator variables for
. beer, liquor, and wine drinkers and non-
[\' responders versus non-drinkers



Occupational exposure:

+A variable that indicated regular occupational
exposure to asbestos, chemicals/acids/solvents,
coal or stone dusts, coal tar/pitch/asphalt, diesel
engine exhaust, or formaldehyde

+9 additional indicator variables that reflected
an occupational dirtiness index

+Quintile indicator variables for each of two diet
Indices that accounted for fat consumption and
consumption of vegetables, citrus and high-fiber
grains were derived based on information given in
the enrollment questionnaire.




U.S. Counties with ACS Subjects
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Survival Model:
Cox Random Effects Poisson

Cox proportional hazards regression
hij s(t)=h0 s(t)njexp(B,Xij s)
h;; : hazard function for the it subject in j* county
S : the stratum (age, race, sex)
hy <(t) : the baseline hazard function
n; : positive random effects with expectation 1

X;; « risk factors for the response (air pollution,
smoking)



Correlations Among
Exposure Estimates
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Results for Circulatory Death
+ Diabetes (10 ug/m?)




Results for Subjects with Central
Monitors and Geocodes (N = 379,902)




Concentration-Response for Remote
Sensing Steeper at Lower Levels




Concentration-Response for the BME-
LUR Model (Similar but Steeper Overall)
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Discussion

All exposure models indicated association
between death and PM, - — comforting!!

Risks vary by exposure model, but models
with ground data produce higher risks

Largest risks for models that detect small-
area variation from traffic



Implications

Suggests exposure models need to predict
at fine spatial scale to give accurate risk
estimates

Critical to predict at scale of likely true
variation for mixtures that are toxic

Current remote sensing models lack the

that spatial resolution necessary to assess
fine-area variation and may underestimate
health effects




Other Implications

Reliance on remote sensing only may lead
to underestimates of effects

May also have led to underestimates in
Global Burden of Disease study



Future Directions

More highly-resolved remote sensing
estimates (1 km)

Improving estimates of traffic with
network kriging models

Developing ensemble methods that use all
exposure models simultaneously (like the
climate change modelers)
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Results for Ischemic Heart Disease
(10 ug/m?3)




