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Exposure Assignments in 
Chronic Cohort Studies 

 Growing availability of Atmospheric 
Chemistry, Remote Sensing, and Hybrid 
models important innovations for the 
study of long-term health effects 

 Few studies have compared the different 
model types in health effects assessment 

 Raises questions about validity and 
comparability of the results 

 



Research Objective 

 To compare the effects of seven different 
PM2.5 exposure estimates on survival in 
the United States based on the American 
Cancer Society Cohort Cancer Prevention 
II Study 

  



Exposure Models Evaluated 
 U.S. EPA Hierarchical Bayesian model 

(Atmospheric Chem model fused to 
ground  ~ 36 km resolution) 

 Remote sensing (RS) model (van 
Donkalaar et al. 2010, 2013 ~ 9.8 km 
resolution – 3 models) 

 Bayesian Maximum Entropy (BME) Space-
time kriging models (~ 9.8 km resolution) 

 Hybrid models (Land Use Regression BME 
~ 100 m resolution) 

 



U.S. EPA Hierarchical Bayesian 
Model (CMAQ fused to Ground) 



Source: van Donkelaar et al. 2010 

PM2.5 Predictions from Integrated Remote 
Sensing-Meteorology Model 
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Optimal Estimation allows: 
• Error-constrained AOD solution 
• Consistent optical properties 
• Local reflectance information 
• Extendable to 1 km resolution 

Relate satellite-based retrievals of aerosol optical depth 

(AOD) to PM2.5 using a global chemical transport model 
(R.Martin, PI) 

Chemical Transport Model 

CALIOP 
Space-borne LIDAR 

Extend previous work with: 
• Optimal Estimation AOD 
• CALIOP-adjusted AOD/PM2.5 

MODIS 
Imaging 

Spectroradiometer 

Optimal Estimation constrains AOD retrieval by error: 

van Donkelaar et al., submitted 

0      10     20     30     40 

40 
 

30 
 

20 
 

10 
 

0 

Observed [μg/m3] 

O
p

ti
m

al
 E

st
im

at
io

n
 [
μ

g
/m

3 ]
 

0                   5                  10                 15 
Optimal Estimation PM2.5 [μg/m3] 



BME Spatiotemporal  
Exposure Model (Lee et al. 2012) 



Hybrid Models based on Land Use 
Regression/Kriging/Remote Sensing 



1. Assemble 
comprehensive 
database of all 
available PM2.5 

monitors 

2. Process into 
monthly averages 

with 50% 
completeness 

criteria 

10. Assign 
exposures to 
small areas (ACS 
subjects, census 
tracts, zip codes) 

6. Select land use 
regression (LUR) 

model to represent 
mean trend using 

Generalized 
Estimating Equation 

5. Use V-fold cross-
validation deletion-

substitution 
algorithms to select 
significant variables 

4. Assign remote 
sensing model 

predictions of PM2.5 
to all monitors (~ 10 
km * 10 km grids) 

3. Derive land use 
and traffic estimates 

for all monitors 

9. Cross-validate 
against leave out 

sites 

8. Combine 
estimates from the 
LUR model with the 

BME model to 
estimate exposures  

7. Take monthly 
residuals from model 

and fit with a 
Bayesian Maximum 

Entropy (BME) 
model 

Objective 1: Developing the PM2.5 Model 



PM2.5 Monitoring Locations 



Land Use and Traffic 

 Comprehensive database of land use and 
traffic 

 

 Traffic derived from 40 million count 
points aligned to the TeleAtlas road 
network 

 

 



Map of Traffic Count Locations 

 



Open Land Use Los Angeles 



Land Use Regression Modeling 

Monitored pollution values are used as the dependent variable  

in a regression model with proximate traffic, land use,  

population, and physical geography variables as predictors 
 



Results of the LUR  
Regression Modeling Using 

Deletion/Substitution/Addition 
Selection  

(after screening 85 variables) 

Modeled PM2.5 Coef. Robust Std. Err. z P>z [95% Conf Interval]

Traffic Weights – Vehicle-KM (1000 m) 1.06E-04 1.37E-05 7.760 0.00E+00 7.94E-05 1.33E-04

Green Space – Acres (100 m) -4.88E-03 9.90E-04 -4.930 0.00E+00 -6.82E-03 -2.94E-03

intercept 11.361 0.146 77.610 0.00E+00 11.074 11.648

Remote Sensing PM2.5: squared 0.070 3.00E-03 23.380 0.00E+00 0.064 0.076

Remote Sensing PM2.5: cubed -2.45E-03 1.31E-04 -18.700 0.00E+00 -2.70E-03 -2.19E-03

Developed Land - Acres (200 m) 0.041 0.006 6.650 0.00E+00 0.029 0.053

intercept 5.923 0.222 26.660 0.00E+00 5.488 6.359

USA – without 
Remote Sensing

USA – With 
Remote Sensing



  

  
 

Predictions: R2 Leave out ~ 80% 



PM2.5 surface for BME-LUR model without 
remote sensing averaged over study period 



PM2.5 surface for BME-LUR model with 
remote sensing averaged over study period 



Comparing  
Health Effects 

 American Cancer Society subjects enrolled in 
1982 (>669,047) geocoded to baseline address 

 Follow up with mortality linkage from 1982 to 
2004 (105,039 deaths from Circulatory + Diabetic 
causes) 

 Numerous covariate data available to control for 
confounding 

 Control applied for 42 individual (smoking, 
occupational exposures, etc) and 8 ecologic 
confounders (unemployment, poverty, etc.) in 
standard and multilevel Cox models 
 



INDIVIDUAL LEVEL COVARIATES: 

1. Indicator variable for current cigarette smoker, 

2. Indicator variable for pipe or cigar smoker, 

3. Current smoker’s years smoked, 

4. Current smoker’s years smoked squared, 

5. Current smoker’s cigarettes per day, 

6. Current smoker’s cigarettes per day squared, 

7. Indicator variable for former cigarette smoker, 

8. Former smoker’s years smoked, 

9. Former smoker’s years smoked squared, 

10. Former smoker’s cigarettes per day, 

11. Former smoker’s cigarettes per day squared, 

12. Indicator variables for starting smoking before or after age 

eighteen, 

13. Number of hours per day exposed to passive cigarette smoke. 

Tobacco smoke variables: 



Education variables: 

  Indicator variables for high school completed 

  and more than high school completed, versus high 

  school not completed 

 

Marital status variables: 

  Indicator variables for “single” and “other” 
  versus married 

 

BMI: 

  BMI and BMI squared 

 

Alcohol consumption: 

  Six variables including indicator variables for 

  beer, liquor, and wine drinkers and non- 

  responders versus non-drinkers 

 



Occupational exposure: 

 

  A variable that indicated regular occupational 

  exposure to asbestos, chemicals/acids/solvents, 

  coal or stone dusts, coal tar/pitch/asphalt, diesel 

  engine exhaust, or formaldehyde 

 

  9 additional indicator variables that reflected   

  an occupational dirtiness index 

 

Diet: 

  Quintile indicator variables for each of two diet  

  indices that accounted for fat consumption and 

  consumption of vegetables, citrus and high-fiber 

  grains were derived based on information given in 

  the enrollment questionnaire. 



U.S. Counties with ACS Subjects 



 
Survival Model:  

Cox Random Effects Poisson 

 Cox proportional hazards regression 

hij s(t)=h0 s(t)ηjexp(β’xij s) 

 hij : hazard function for the ith subject in jth county 

 S : the stratum (age, race, sex)  

 h0 s(t) : the baseline hazard function 

 ηj : positive random effects with expectation 1 

 Xij : risk factors for the response (air pollution, 
smoking)  

 



Correlations Among  
Exposure Estimates 

 



Results for Circulatory Death  
+ Diabetes (10 ug/m3) 



Results for Subjects with Central 
Monitors and Geocodes (N = 379,902) 



Concentration-Response for Remote 
Sensing Steeper at Lower Levels 



Concentration-Response for the BME-
LUR Model (Similar but Steeper Overall) 



Discussion 

 All exposure models indicated association 
between death and PM2.5 – comforting!! 

 Risks vary by exposure model, but models 
with ground data produce higher risks 

 Largest risks for models that detect small-
area variation from traffic 

 

 



Implications 

 Suggests exposure models need to predict 
at fine spatial scale to give accurate risk 
estimates 

 Critical to predict at scale of likely true 
variation for mixtures that are toxic 

 Current remote sensing models lack the 
that spatial resolution  necessary to assess 
fine-area variation and may underestimate 
health effects 

 



Other Implications 

 

 Reliance on remote sensing only may lead 
to underestimates of effects 

 

 May also have led to underestimates in 
Global Burden of Disease study 



Future Directions 

 More highly-resolved remote sensing 
estimates (1 km) 

 Improving estimates of traffic with 
network kriging models 

 Developing ensemble methods that use all 
exposure models simultaneously (like the 
climate change modelers) 
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THANK YOU!  



Results for Ischemic Heart Disease  
(10 ug/m3) 


