The EMEP4UK model: examples of some current applications & developments

Mathew Heal (UoE) & Massimo Vieno (CEH)

with acknowledgements to many other collaborators and PhD students at UoE Schools of Chemistry & GeoSciences, CEH, EMEP MSC-W, CERC, IMK-IFU Karlsruhe,

and to funders NERC, CEH, Defra, EMEP, EU-ECLAIRE

Outline

- Brief description of the EMEP4UK regional atmospheric chemistry transport model (ACTM)
- Example applications:
 - The recent UK PM episode
 - Mitigation of UK PM_{2.5}
- Example ongoing developments:
 - Increasing spatial resolution (\rightarrow for health exposure)
 - Coupling to dynamic emissions

The EMEP4UK ACTM

3D Eulerian framework (Vieno et al., 2010) derived from EMEP MSC-W model (Simpson et al., 2012)

5 km \times 5 km British Isles grid nested within EMEP 50 km \times 50 km domain

20 vertical layers to ~16 km, surface layer 90 m

Meteorology driver is WRF 3.5 (www.wrf-model.org)

CRIv2 R5 chemical solver (195 species, 569 reactions; Watson et al. 2008)

PM includes SIA, SOA, sea-salt, dust, forest fire...

Dry and wet deposition as for EMEP main model

 \Rightarrow Hourly output of concentrations, deposition & met variables

Outline

- Brief description of the EMEP4UK regional atmospheric chemistry transport model (ACTM)
- Example applications:
 - The recent UK PM episode
 - Mitigation of UK PM_{2.5}
- Example ongoing developments:
 - Increasing spatial resolution (\rightarrow for health exposure)
 - Coupling to dynamic emissions

Rapid simulations of the spring 2014 UK particulate matter air pollution event

Used 2010 emissions

Contributions from UK/non-UK emissions investigated by simple sensitivity expt. with zero anthropogenic UK emissions

EMEP4UK vs. observations – hourly PM_{2.5}

EMEP4UK vs. observations – hourly PM_{2.5}

Auchencorth PM_{2.5}

Hourly means, 26th Mar – 3rd Apr

March - April 2014 high PM episode over the UK - EMEP4UK rv.4.3

PM_{2.5} London Bloomsbury

PM_{2.5} Plymouth Centre

PM_{2.5} Harwell

- The EMEP4UK model does a reasonable job of simulating the magnitude and timing of the development of the episode for PM_{2.5} (& PM₁₀) across the UK
- Substantial PM_{2.5} from non-UK emissions during the episode
- Nitrate is a major component of PM_{2.5} throughout this period;
 Saharan dust arrives later

Modelling support for Air Quality Expert Group report "Mitigation of PM_{2.5}"

(Follow-up to AQEG's PM_{2.5} report)

- To quantify how much of the PM_{2.5} in the UK is controllable, at least in principle, by the UK
- Identify what component emissions reductions are most effective in reducing total PM_{2.5}

 \Rightarrow EMEP4UK sensitivity experiments where UK anthropogenic emissions of NH₃, NO_x, SO₂ and primary PM_{2.5} each reduced by 30%

Reductions in $PM_{2.5}$ (µg m⁻³) for 30% reductions in UK SO_x , NO_x or NH_3 emissions

Only small reductions in UK PM_{2.5} from 30% reductions in UK emissions

...and for 30% reductions in UK primary PM_{2.5}

Different spatial patterns from reductions in UK emissions of primary PM_{2.5} and NH₃

The difference in effect on PM_{2.5} of 30% reductions in UK NH₃ or primary PM_{2.5}

Blue = 30% NH₃ reductions more effective at mitigating PM_{2.5} than 30% primary PM_{2.5} reductions

Orange = 30% primary $PM_{2.5}$ reductions more effective at mitigating $PM_{2.5}$ than 30% NH_3 reductions

70% NH₃ emis - 70% PPM₂₅ emis

-0.24 -0.12 0 0.12 0.24

Estimates of impact of 30% UK emissions reductions on the UK $PM_{2.5}$ Average Exposure Indicator of ~13 μg m $^{-3}$

Component	EMEP4UK data	From other data
Primary PM _{2.5}	0.4	up to 0.8 if 1:1 proportionality
NH ₃	0.34	0.16-0.22 Nemitz et al.
		0.1-0.34 EMEP S-R
SO ₂	0.28	0.14-0.20 Nemitz et al.
		0.12-0.35 EMEP S-R
NO _x	0.10	0.10-0.15 Nemitz et al.
		0.03-0.07 EMEP S-R
VOC	0.08	-
Total	~1.2 µg m ⁻³	~ 1 – 1.7 µg m ⁻³
	Only ~10% re	duction in AEI

Targeting primary PM_{2.5} is most effective (but NH₃ and SO₂ also important)

Outline

- Brief description of the EMEP4UK regional atmospheric chemistry transport model (ACTM)
- Example applications:
 - The recent UK PM episode
 - Mitigation of UK PM_{2.5}
- Example ongoing developments:
 - Increasing spatial resolution (\rightarrow for health exposure)
 - Coupling to dynamic emissions

Increasing EMEP4UK rv4.3 horizontal resolution

(Altitude / m)

Visualisation of emissions at different scales

NO_x annual emissions

$2008 \text{ NO}_{x} \text{ mg m}^{2}$

$2008 \text{ NH}_3 \text{ mg m}^2$

2008 O₃ (ppb)

Effect of model resolution on simulated exposure

Area around Aberdeen as an example

Effect of model resolution on mod-obs comparison

Notable spatial range in urban O_3 (± 1 km grid cell)

The need for yet higher spatial resolution

2010 annual average surface concentration of NO₂

Nesting ADMS-Urban within EMEP4UK – proof of concept in central London

PM_{2.5}

(Corrected for doublecounting of emissions)

Annual average maps are for illustration only

7.0 - 8.0 8.0 - 9.5

9.5 - 10.0 10.0 - 10.5

10.5 - 11.0

11.0 - 12.0 12.0 - 14.0

14.0 - 16.0 16.0 - 20.0 - the motivation is in being able to derive time series of highly-spatially-resolved pollutant fields without constraint of measurements for BCs

Coupling to dynamic emissions models

Vegetation & litter decay as an example

Hours- days Days – weeks – months – years

THANK YOU

... and a reiteration of acknowledgements to many colleagues and funders