MRC-PHE Centre for Environment & Health

Recent findings from comprehensive vehicle emission remote sensing measurements

23-24th June 2014 Frontiers in Air Quality Science, London

David Carslaw

Trends at Marylebone Road over 12 years

- Concentrations of total NO_x have effectively been constant for over a decade
 - This is very convenient for showing how primary NO₂ emissions affect things
 - What about hourly NO₂ exceedances (hours > 200 μg m⁻³)?

Trends at Marylebone Road over 12 years

- Concentrations of total NO_x have been almost constant for over a decade
 - This is convenient for showing how primary NO₂ emissions affect things
 - What about hourly NO₂
 exceedances (hours > 200 μg m⁻³)?
- Hourly exceedances have varied from 2 hours (meets Limit Value) to 853
- It is directly emitted (primary) NO₂ emissions that control this behaviour
 - Diesel vehicle technology change oxidation catalysts used to *deliberately* convert NO to NO₂

Other hot spots (or hot lines?) are worse

• Oxford Street 2013

- Annual mean 134 μg m⁻³
 1568 hours > 200 μg m⁻³
 maximum = 489 μg m⁻³
- Highest annual mean concentration and most hourly NO₂ exceedances in the World?
- Highest in the (long) history of air pollution?
- It is essential we understand the sources of NO_x and NO₂ if we are to tackle this issue effectively

Source: Sean Beevers

MRC-PHE Centre for Environment & Health

What would we like to know?

Ideally we want to know what every vehicle emits at all times!

- Failing that (as we surely will) we need reliable emission estimates that can be reconciled with atmospheric measurements
- Vehicle emission remote sensing is a very useful technique in this respect
- Two Defra-funded projects with the aim of better understanding these issues

Vehicle emission remote sensing

- Developed in the late 1980s by Don Stedman/Gary Bishop at the University of Denver
- non-intrusive technique to determine the concentration of certain pollutants in situ using IR/UV absorption spectroscopy
 - Can measure CO, HC, NO, NO₂, NH₃, SO₂ as a ratio to CO₂
- Rapid measurements (ca. 50) in 0.5 seconds of the exhaust plume
- Number plate photographed
- Speed and acceleration measured
- Several key benefits

Note – focus in USA is *IM* (inspection and maintenance) – identifying 'broken' vehicles

Measurement campaigns in 2012 and 2013

2012

- Denver instrument for 6 weeks
- 70,000 measurements at 4 locations across London
- Focus on quantifying the NO₂ component in exhaust
- Information on buses and taxis – important in central London

2013

- Denver instrument for 6 weeks
- Improved quantification of emissions from different bus technologies
- Measurements of an urbanoptimised SCR system on buses
- On-road experiments and controlled conditions (test track)
- First on-road Euro 6 remote sensing measurements?

- Modern petrol vehicles are very low emitters of NO_x and NO_2
- Still useful to accelerate the removal of older noncatalyst and catalyst vehicles though...

MRC-PHE Centre for Environment & Health

Diesel car NO_x– comparison with Type Approval emissions

- Type Approval emissions
 - 1000s of new car models tested each year, including CO₂ and NO_x
 - NO_x is legislated NO_2 is not
 - Tested over New European Test Cycle (NEDC)
- Compare with remote sensing data
 - Use *same* measurement unit g NO_x per kg fuel burnt
 - Sample is >25,000 vehicles
- Euro 6 emit 40% less NO_x than Euro 5
 - Type Approval/legislation would suggest a 56% reduction

How representative are NEDC and remote sensing measurements?

- Black circles show driving conditions over the Type Approval test cycle (NEDC) top plot
- Coloured region is that covered by the remote sensing measurements – NO_x/CO₂ ratio
- Actual driving conditions are much more dynamic than the NEDC
- Portable Emission Measurement System (PEMS)* data bottom plot example of a diesel car in Milan (140 km of driving)
- The RSD data are representative of typical urban and suburban driving conditions

*Thanks to from Dr Martin Weiss, JRC, Ispra

Diesel car NO₂ – trends over time

- Petrol car emissions are consistently very low
- Diesel car NO₂ emissions have increased considerably
- Euro 6 diesel NO₂ is lower than Euro 5
 - Note uncertainties need more measurements
 - Reduction in NO₂ emissions as catalysts become less active over time?

TfL retrofit bus emissions

- 900 Euro III buses converted to a 'low-NO₂' SCRT
 - CRT = Continuously Regenerating Trap
 - SCR = Selective Catalytic Reduction
 - Thermally optimised + larger catalyst
- Certain bus routes targeted
 - Remote sensing measurements over 2 weeks
 - Ambient measurements over several years
- Our 2012 measurements showed Original Equipment Manufacturer (OEM) SCR systems were largely ineffective at reducing NO_x
- Is retrofitting with SCRT effective?

Source: Görsmann et al.

What did we measure?

- Two weeks on Putney Hill (onroad measurements)
 - >700 SCRT buses over a range of speeds/accelerations
 - 122 nominally identical Euro III non-SCRT buses measured
- Controlled measurements at a test track location single bus
 - Full SCRT
 - SCR only
 - Base bus (just the silencer)
 - Engine/exhaust measurements at 1 Hz
 - [+ black carbon + commercial remote sensing instrument]

On-road measurements in London

- On average we see a 55% reduction in emissions of NO_x
- The corresponding reduction in NO₂ is **61%**
- These reductions are substantial compared with the average performance of the bus fleet in London including OEM SCR systems

A closer look at the emissions behaviour

- Emissions distribution
 - SCRT buses sometimes behave like base buses
 - Other times there is ~90% reduction in NO_x
- Test track results
 - Importance of SCR inlet temperature
 - >200°C gives 90%
 reduction in NO_x
- Expect greater reduction in NO_x where engine runs hotter

The general bus fleet – measurements from Oxford

- Measurements on Oxford High Street
 - Closed to most other vehicle types
 - Exceedances of annual and hourly NO₂ Limit Value
- >1700 measurements of buses
 - Mostly Euro V (83%)
 - Broad mix of technologies including hybrid SCRs

Results from Oxford

- Large range in NO_x performance
 - Factor of ~6 within Euro V SCR…
 - Some Euro V are higher than earlier Euro classes
- Even larger variation in NO₂ emissions
 - Highest NO_x emitter is lowest NO₂ emitter
 - Very different consequences for ambient NO₂ concentrations

Concluding remarks

- Primary NO₂ emissions remain important across Europe
- Emissions of NO_x and NO₂ from modern petrol vehicles are consistently low
- Euro 6 diesel cars show an encouraging reduction in NO_x and to a lesser extent NO_2
 - Need more data from wider range of emission reduction technologies
- TfL retrofit Euro III buses show substantial reductions in NO_x and NO_2
 - Particularly effective NO₂ reduction

Concluding remarks

- The wider bus fleet can have highly variable NO_x and NO₂ emissions performance
 - Even for vehicles with nominally the same technology
 - Ambient NO₂ issues could be very dependent on choice of urban bus fleets in many urban areas
- Overall our recent measurements provide encouraging news for future NO₂ concentrations
 - ...but much remains to be done
 - Need to remain vigilant remote sensing is very effective in this respect

