AIRPARIF

PM2.5 pollution: The situation in the Greater Paris Area

Sources apportionment of airborne particles in the Greater Paris Area

Sophie Moukhtar - Airparif NGO for Air Quality Monitoring in the Greater Paris Area

Airparif study in partership with the LSCE (Laboratory for Climate and Environmental Sciences, CNRS-CEA)

With the participation of:

- -The King's College of London Dr Gary Fuller
- -The Berlin Senate Department for Health, Environment and Consumer Protection – Dr Martin Lutz
- The Institute of Environmental Assessment and Water Research, CSIC, Barcelona Dr Xavier Querol
- The Center for Research and Teaching in Atmospheric Environment, Ecole des Ponts, Paris Dr Christian Seigneur
- The Inter-university Laboratories for atmospheric System, Paris Dr Matthias Beekmann
- The National Institute for for Industrial Environment and Risks, Paris Dr Olivier Favez

With the financial support of the government, the regional council and the City Hall of Paris

PM10 pollution in the Greater Paris Area

Public exposure in 2007 : 4.2 million

Exceedance mainly in highly populated areas

> Public exposure in 2011: 2.7 million

A DE LENVIRONNEMENPublic exposure in lle-de-France :4.2 million (448 km²) in 2007exposed to an air > limit value(daily mean > 50 μg/m³ more than 35 days a year) in 20072.7 million in 2011

Chronical exceedance of the limit values > Need for actions

Risk of exceedance of 35 days > 50 μgm³

> Certain exceedance Likely exceedance

Unlikely exceedance

No risk

PM 2.5 pollution in the Greater Paris Area

Context of the source apportionment study

French "Particle Plan"

Objective of 15 µg/m³ of PM2.5 by 2015

→ reduction by 30 % of the PM2.5 levels

Implementation of an efficient abatement strategy requires a clear understanding of the origins and the various sources of PM

Final goal:

Actions to reduce the chronic pollution

Sources apportionment study in the Greater Paris Area

- METHODOLOGY
- RESULTS

Based on the assumption that :

atmospheric PM concentrations = addition of geographical contributions

- [Rural] representative for the import
- [Urban] [Rural] representative for the urban background contribution
- [Traffic] [Urban] representative for the traffic contribution

Sites implementation

 PM imported to the region arise from the transport of the urban plume

The rural background

 Each day: analysis of meteorological data provided by Meteo France and by our own modelling plat-form ESMERALDA

 for each day, selection of the rural background located upwind of the urban site

Air Pollution Seminar – King's College – 280612

S DE L'ENVIRONNEMENT

- ✓ Major road in the Ile-de-France region (240.000 vehicles/day)
- \checkmark Measurements available for the past years (NOx, CO, SO₂, PM10, PM2.5)
- ✓ Lot of tests already performed on this station
- ✓ Levels half-way between our different road-side monitoring sites

Air Pollution Seminar – King's College – 280612

Complementary campaign : comparison of chemical composition and quantity of PM on a different traffic site

PM2.5 sampling on a large avenue in the <u>inner Paris (Boulevard Haussmann:</u> 35 000 vehicles / day). From March 15th to April 4th

Step 1: Sampling and chemical analysis - from 2009/09/11 to 2010/09/10

Sampling

Daily PM2.5 Sampling on the five sites - 2 filters collected / site (a teflon and a quartz).

- Daily PM2.5 Sampling on the inner Paris traffic site for 15 days - 2 filters collected.

- Daily PM10 Sampling on the traffic and the urban sites -1 filter collected/site.

Total mass is measured by gravimetry.

Analysis of the chemical composition of PM: Major ions, Metals, Elementary carbon / Organic Carbon, Levoglucosan (only in winter) as a tracer for biomass burning.

Step 2: Coupling of chemical composition per geographical area with the emission inventory

Sources apportionment study in the Greater Paris Area

- METHODOLOGY
- RESULTS

Geographical origins of PM2.5 on the ring road

PM2.5 mean concentration measured on the ring road traffic site comes from :

- About 40% from external sources
- About 60% from local sources :
 - ~45% from local traffic
 - ~15% from urban background

► AIR PARIF

Air Pollution Seminar – King's College – 280612

Sources apportionment of PM on the ring road traffic site

Local sources of PM2.5 on two different traffic sites

Air Pollution Seminar – King's College – 280612

Air Pollution Seminar – King's College – 280612

Sources of PM2.5 produced by the urban area

Main sources of the urban contribution: Traffic exhaust, Sources of secondary inorganic and wood burning.

►AIR PARIF

Air Pollution Seminar – King's College – 280612

Strong import to the region but still: 50 to 60 % of PM are produced locally on an annual average basis.

Traffic is the main local source of PM:

Strong impact of resuspension which still need to be investigated.
Diesel vehicles are some strong particles emitters compared with gasoline ones.

Wood burning is also a strong source of particles compared to other fuel.

Definition of the Atmosphere Protection Plan (APP).

Definition of a Low Emission Zone (ZAPA) which takes into account Paris and the close suburb.

5 Groups are taken into account:

Airports, Industry, Residential sector, Agriculture, Transports

Measures presented on 2011/10/19 to the APP Elaboration Board:

- 11 regulatory measures, among which:
 - To limit emissions related to biomass combustion, for devices less powerfull than 400 kW
- 3 objectives and recommandations, among which:
 - To limit circulation of the most pollutant vehicles in the very center of the Paris metropolitan area
 - To promote an AQ friendly policy, and comply with the objectives set by the Urban Mobility Plan (project)
- 7 secondary measures
- 3 studies

 \rightarrow Prospectives scenarios have been achieved to estimate the impact of the APP on the PM, NOx and O₃ concentrations in 2020.

Transportation Measures in the Low Emission Zone:

- To restrict or prohibit the acces to the vehicles which are the greatest sources of pollution.
- To accelarate the introduction of cleaner vehicles and services.

Definition of a low emission zone ZAPA

- To regulate the offer for parking space

- To allocate the roads to favor the less polluting form of transport (bike, public transit, carpooling...)
- To develop and improve public transit...

Preliminary step for the definition of the low emission zone:

- Definition of a geographical area and of a list of vehicles for which the entry in the area is not permitted (based on a classification of vehicles by category of pollution)

- Impact assessment on air quality, socio-economic impact (deadline July 2012)...
- Determination of a method for monitoring and survey.

Thank you for your attention!