MRC-PHE Centre for Environment & Health

Impacts of London's road traffic air and noise pollution on foetal growth

Rachel B Smith¹, Daniela Fecht¹, John Gulliver¹, Sean Beevers², David Dajnak², Marta Blangiardo¹, Rebecca Ghosh¹, Anna Hansell¹, Frank Kelly², Ross H Anderson^{2,3}, <u>Mireille B Toledano¹</u>

¹ MRC-PHE Centre for Environment and Health, Department of Epidemiology & Biostatistics, School of Public Health, Imperial College London, London, UK; ² MRC-PHE Centre for Environment and Health, Environmental Research Group, King's College London, London, UK; ³ Population Health Research Institute, St George's, University of London, London, UK

www.environment-health.ac.uk

Background

Previous research – air pollution + noise

Study	Exposure	Gehring et al 2014	Dadvand et al 2014	Hjortebjerg et al 2016
Setting		Vancouver	Barcelona	Denmark
Size		n=68,238	n=6,438	n=75,166
Single- exposure models:	Air pollution	↓ BW	↓ BW	Null
	Noise	↓ BW	↓ BW	Null
Joint air pollution- noise models:	Air pollution (adj. for noise)	Null	↓ BW	Null
	Noise (adj. for air pollution)	↓ BW	Null	Null

(Gehring et al. Epidemiology. 2014; 25: 351-358. Dadvand et al. Epidemiology. 2014; 25: 518-525. Hjortebjerg et al. Environ Int. 2016; 95:1-7.)

 Extent to which observed air pollution associations attributable to road traffic noise co-exposures is poorly understood

Aim

To investigate long-term exposure to trafficrelated air pollution and noise in relation to foetal growth.

Study design

 Greater London area bounded by the M25 motorway, 2006-2010

 Retrospective population-based cohort

Fecht et al. Environ Int. 2016; 88: 235-242. Reproduced with permission.

MRC-PHE Centre for Environment & Health

Exposure assessment – air pollution

Primary traffic air pollutants:

- NO2
- NOX
- PM2.5 from traffic-exhaust
- PM2.5 from traffic non-exhaust (brake/tyre wear and re-suspension)

Regional/urban background air pollutants:

- PM2.5
- PM10
- Ozone

Fig 1. Modelled annual mean NO2 (2008)

From Traffic Pollution & Health project website: http://www.kcl.ac.uk/lsm/research/divisions/aes/research/ERG/researchprojects/traffic/ TRAFFIC-SM-Air-pollution-Model.pdf

- Dispersion model (KCLurban) at 20m x 20m grid resolution (1)
- Monthly concentrations for Jan 2003 Dec 2010
- Time-weighted average for pregnancy, each trimester, and postnatal time periods

(1) Beevers et al. J Exp Sci Environ Epidemiol. 2013; 23, 647-653.

www.environment-health.ac.uk

Exposure assessment – noise

Road traffic noise

- A-weighted day- and night-time noise exposures estimated
- L_{Aeq,16hr} (average sound level 0700 2300 hours)
- L_{night} (average sound level 2300 0700 hours)
- modelled at address-level for 2007 using the TRAffic Noise EXposure (TRANEX) model (1)

Gulliver et al. Environ Modelling Software. 2015;183-193. Reproduced with permission.

Rail/aircraft noise

 Exposure to Lday>50dB(A) from railways or aircraft (Heathrow Airport and City Airport) – for sensitivity analyses

(1) Gulliver et al. Environmental Modelling & Software. 2015; 75: 183-193

Outcome and confounder data

- 572,910 singleton live births from National Births Register
- **Continuous birth weight** (grams) limited to term births (≥37 wks gestation)
- Confounders: maternal age, birth registration type, ethnicity, infant sex, gestational age, season, year, Carstairs deprivation index, tobacco expenditure, MSOA random intercept

Data linkage

www.environment-health.ac.uk

 \frown

Methods – epidemiological analysis

Linear regression

Exposures:

- Air pollutants continuous (per IQR)
- Noise categorical

Models:

- Single exposures
- Two air pollutant exposures
- Joint air pollutant + noise exposures

Adjustment for potential confounders

Exposure profile of the study population

Exposures	Mean	Min	25 th	75 th	Max
Primary traffic-related air pollutants (μg/m³)					
NO ₂	40.6	20.6	36.0	44.6	191.6
NOx	72.5	26.6	59.9	82.7	543.7
PM _{2.5} traffic-exhaust	0.61	0.16	0.45	0.72	7.10
PM _{2.5} traffic non-exhaust	0.73	0.20	0.56	0.84	6.59
Regional/urban background air pollutants (µg/m³)					
PM _{2.5}	14.4	10.3	13.4	15.4	26.6
PM ₁₀	23.1	13.6	21.8	24.5	48.8
O ₃	31.9	4.9	27.6	36.2	55.8
Noise (dB)					
Day-time noise (L _{Aeq,16hr})	58.1	54.7	55.0	58.5	86.0
Night-time noise (L _{night})	53.2	49.6	49.9	53.8	80.0

Correlations between exposures

Spearman's correlation	NO ₂	NO _X	PM _{2.5} traffic- exhaust	PM _{2.5} traffic non-	PM _{2.5}	PM ₁₀	03	L _{Aeq,} 16hr	L _{night}
NO	1 00			exhaust					
NO _X	1.00	1.00							
PM _{2.5 traffic-exhaust}	0.95	0.95	1.00						
PM _{2.5 traffic non-exhaust}	0.90	0.89	0.93	1.00					
PM _{2.5}	0.68	0.69	0.68	0.46	1.00				
PM ₁₀	0.77	0.78	0.78	0.58	0.95	1.00			
0,	-0.76	-0.77	-0.68	-0.66	-0.46	-0.53	1.00		
L _{Aeg.16hr}	0.31	0.29	0.38	0.47	0.15	0.23	-0.14	1.00	
L _{night}	0.33	0.32	0.41	0.50	0.16	0.24	-0.15	1.00	1.00
			·						

- Air pollutant exposures were positively correlated, except with O3
- Primary traffic-related air pollutant exposures highly correlated
- Day- and night-time noise exposures highly correlated
- Weak to moderate correlation between exposures to traffic-related air pollutants and road traffic noise

www.environment-health.ac.uk

Selected characteristics, birth outcomes, exposures

Variable		Ν	Mean birth weight (g)	LBW (%)	NO _{2 -} Mean pregnancy average (μg/m3)	L _{Aeq, 16hr} (% exposed ≥65dB)
	Total population	572,910	3330	5.68	40.6	14.2
Ethnicity	White	301,426	3415	4.25	39.8	12.9
	Asian	99,773	3135	8.78	40.9	15
	Black	98,687	3275	7.06	42.0	15.3
	Other	73,024	3318	5.45	41.4	16.6
Carstairs	1 - least deprived	89,401	3418	3.82	37.3	9.2
quintile	2	97,039	3380	4.56	39.3	13.6
	3	106,936	3337	5.53	40.4	15.2
	4	126,815	3303	6.28	41.1	15.9
	5 - most deprived	152,719	3263	7.08	43.0	15.2
Year of birth	2006	108,190	3317	6.08	42.3	13.7
	2007	113,092	3324	5.82	40.6	13.9
	2008	113,213	3330	5.74	42.1	14.1
	2009	116,454	3336	5.51	41.0	14.2
	2010	121,961	3340	5.29	37.2	14.8

Results: Traffic-related air pollution

Mean difference in term birth weight (g) associated with air pollutant exposure across entire pregnancy (N=540,365)

	Unadjusted		Adjusted*		
	Term birth weight (g)		Term birth weight (g)		
Exposure	MD (95%CI)	p-value	MD (95%CI)	p-value	
NO2		<0.001		<0.001	
(per IQR, 8.6 μg/m³)	-20.67 (-22.30, -19.04)	<0.001	-10.97 (-12.98, -8.96)		
NOX		<0.001		-0.001	
(per IQR, 23.7 μg/m³)	-20.15 (-21.81, -18.49)	<0.001	-10.74 (-12.76, -8.73)	<0.001	
PM2.5 traffic- exhaust (per	22.00/24.00 24.20	10 001		5) <0.001	
IQR, 0.35 μg/m³)	-23.09 (-24.89, -21.29)	<0.001	-12.43 (-14.51, -10.35)		
PM2.5 traffic non-exhaust		<0.001		<0.001	
(per IQR, 0.29 μg/m³)	-17.24 (-18.68, -15.80)	<0.001	-7.41 (-8.96, -5.86)		

*Linear regression model adjusted for Sex, Maternal age, Birth registration type, Tobacco expenditure (COA-level), Carstairs quintile (COA-level), individuallevel ethnicity, gestational age as linear and quadratic terms, Season of birth, Year, and random intercept for Middle Layer Super Output Area (MSOA)

Results: two air pollutant models

Adjusted* mean difference in term birth weight (g) per IQR increase in two air pollutant models:

*Linear regression model adjusted for Sex, Maternal age, Birth registration type, Tobacco expenditure (COA-level), Carstairs quintile (COA-level), individual-level ethnicity, gestational age as linear and quadratic terms, Season of birth, Year, and random intercept for Middle Layer Super Output Area (MSOA), in addition to the air pollutant indicated in the figure.

IQR values for air pollutants: NO2 (per IQR, 8.6 µg/m³), PM2.5 exhaust (per IQR, 0.35 µg/m³), PM2.5 non-exhaust (per IQR, 0.29 µg/m³)

www.environment-health.ac.uk

Results: Road traffic noise

Mean difference in term birth weight (g) associated with road traffic noise

		Unadjusted		Adjusted*		
	Term birth weight (g)			Term birth weight (g)		
Exposure	Ν	MD (95%CI)	p-value	MD (95%CI)	p-value	
Day-time noise L _{Aeg,16hr}						
<55dB	157,491	Reference		Reference		
55-<60 dB	265,603	-3.80 (-6.74 <i>,</i> -0.87)		2.02 (-0.73 <i>,</i> 4.78)		
60-<65 dB	40,755	-14.63 (-19.76, -9.49)		-4.70 (-9.39 <i>,</i> -0.02)		
>=65dB	76,516	-19.88 (-23.95, -15.81)		-5.23 (-9.00 <i>,</i> -1.45)		
p for trend	540,365		<0.001		<0.001	
Night-time noise L _{night}						
<50dB	162,260	Reference		Reference		
50-<55 dB	257,045	-6.63 (-9.56, -3.70)		0.08 (-2.67, 2.83)		
55-<60 dB	40,256	-14.62 (-19.76, -9.47)		-4.64 (-9.33 <i>,</i> 0.06)		
60-<65 dB	46,994	-17.33 (-22.17, -12.49)		-4.34 (-8.76, 0.09)		
>=65dB	33,810	-31.65 (-37.17, -26.13)		-12.66 (-17.77, -7.55)		
p for trend	540,365		<0.001		<0.001	

*Linear regression model adjusted for Sex, Maternal age, Birth registration type, Tobacco expenditure (COA-level), Carstairs quintile (COA-level), individual-level ethnicity, gestational age as linear and quadratic terms, Season of birth, Year, and random intercept for Middle Layer Super Output Area (MSOA)

Results: traffic-related air pollution & noise

Adjusted* mean difference in term birth weight (g) associated with night-time noise (L_{night}) and primary traffic air pollutants in single-exposure and joint air pollutant-noise models:

*Linear regression model adjusted for Sex, Maternal age, Birth registration type, Tobacco expenditure (COA-level), Carstairs quintile (COA-level), individual-level ethnicity, gestational age as linear and quadratic terms, Season of birth, Year, and random intercept for Middle Layer Super Output Area (MSOA). IQR values for air pollutants: NO2 (per IQR, 8.6 μg/m³), NOX (per IQR, 23.7 μg/m³), PM2.5 exhaust (per IQR, 0.35 μg/m³), PM2.5 non-exhaust (per IQR, 0.29 μg/m³)

Summary

- Largest study to date, and first in UK, of foetal growth and joint air pollution and noise exposures.
- Long-term exposure to traffic-related air pollution during pregnancy associated with reduced birth weight. Robust to adjustment for road traffic noise → associations not attributable to road traffic noise.
- Specifically, <u>near-road exposure to fine particulate matter</u> <u>from road traffic exhaust emissions (PM2.5 traffic-exhaust)</u> appears to drive the air pollutant associations with reduced birth weight in London.

thebmj Research - Education - News & Views - Campaigns -

Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study

BMJ 2017 ; 359 doi: https://doi.org/10.1136/bmj.j5299 (Published 05 December 2017) Cite this as: *BMJ* 2017;359:j5299

Article	Related content	Metrics	Responses	Peer review

Rachel B Smith, research associate ¹², Daniela Fecht, research fellow³, John Gulliver, senior lecturer¹, Sean D Beevers, senior lecturer⁴, David Dajnak, deputy manager⁴, Marta Blangiardo, senior lecturer¹, Rebecca E Ghosh, research associate³, Anna L Hansell, assistant director²³, Frank J Kelly, professor²⁴, H Ross Anderson, emeritus professor⁴⁵, Mireille B Toledano, reader¹²

Author affiliations 🗸

Correspondence to: M B Toledano <u>m.toledano@imperial.ac.uk</u>
Accepted 1 November 2017

Abstract

Objective To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes.

Design Retrospective population based cohort study.

Setting Greater London and surrounding counties up to the M25 motorway (2317 km²), UK, from 2006 to 2010.

Participants 540 365 singleton term live births.

Main outcome measures Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight.

Results Average air pollutant exposures across pregnancy were 41 μ g/m³ nitrogen dioxide (NO₂), 73 μ g/m³ nitrogen oxides (NO_x), 14 μ g/m³ particulate matter with aerodynamic diameter <2.5 μ m (PM_{2.5}), 23 μ g/m³ particulate matter with aerodynamic diameter <2.5 μ m (PM_{2.5}), 23 μ g/m³ particulate matter with aerodynamic diameter <10 μ m (PM₁₀), and 32 μ g/m³ ozone (O₃). Average daytime (L_{Aeq,16hr}) and night-time (L_{night}) road traffic A-weighted noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO₂, NO_x, PM_{2.5}, PM₁₀, and source specific PM_{2.5} from traffic exhaust (PM_{2.5}).

Smith et al. Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study. BMJ. 2017 Dec 5;359:j5299

Archive

Acknowledgements

We thank Margaret Douglass and Peter Hambly for technical database support, and ONS for provision of birth outcome data.

This work is supported by the UK Natural Environment Research Council, Medical Research Council, Economic and Social Research Council, Department of Environment, Food and Rural Affairs, and Department of Health (NE/I00789X/1, NE/I008039/1) through the cross-research council Environmental Exposures & Health Initiative (EEHI).

The MRC-PHE Centre for Environment and Health is funded by the UK Medical Research Council and Public Health England. The work of the UK Small Area Health Statistics Unit (SAHSU) is funded by Public Health England as part of the MRC-PHE Centre for Environment and Health, funded also by the UK Medical Research Council (MR/L01341X/1).

contact: m.toledano@imperial.ac.uk

