

David Green

School of Population Health and Environmental Sciences

Aim

- Outline the importance of construction emissions now and in the future
- Examine the work that ERG have been doing to:
 - quantify the impact of construction emissions
 - work with government industry and policy makers to reduce it
 - implications for public and worker exposure
- Look to the future to highlight what is needed to improve our understanding and drive down emissions

Construction Industry

- Construction is the third largest economic sector in the UK
- GB construction output 2018 growth of 2.1% to £159.6 bn.
- Despite Brexit, 2018 is still forecast to be the highest level of construction output on record
- Future growth reliant on infrastructure projects - HS2 and the Northern Powerhouse

Growing urban populations

© Crown Copyright and database right 2013. Ordnance Survey 100032216 GLA.

- GLA central predictions: 9.2 million in 2021 rising to >10 million in 2036
- Across UK many cities have grow by 50%.
- Internationally, urban population in 2014 was 54% of the total global population (WHO).
- The global urban population is expected to grow by 1.44-1.84% pa to 2030.
- Dependent on the provision of affordable housing and infrastructure provided by the construction industry with consequential impacts on urban air quality.
- Emissions from the construction industry will continue to increase in importance and therefore require quantification and regulation by urban and national governments.
- Consequently included in air quality policy development nationally and in regional government (London & Wales)

Growing urban populations

Fastest growing city centre populations 2002-2015

City centre defined as a 0.8 mile radius from the centre of cities with 550,000 to 4m residents and a 0.6 mile radius from the centre of towns and cities with 135,000 to 550,000 residents.

- GLA central predictions: 9.2 million in 2021 rising to >10 million in 2036
- Across UK many cities have grow by 50%.
- Internationally, urban population in 2014 was 54% of the total global population (WHO).
- The global urban population is expected to grow by 1.44-1.84% pa to 2030.
- Dependent on the provision of affordable housing and infrastructure provided by the construction industry with consequential impacts on urban air quality.
- Emissions from the construction industry will continue to increase in importance and therefore require quantification and regulation by urban and national governments.
- Consequently included in air quality policy development nationally and in regional government (London & Wales)

Source: Centre for Cities

NO_X Emissions Inventory

PM10 Emissions Inventory

NO_X Emissions Inventory Forecast

Future

MAQF - London Low Emission Construction Partnership (LLECP)								
High Speed2	Dust Suppressants	Cons						
MAQF - Heygate		NRMM Register			DEMIST			
SPG Trigger Levels		NRMM Emissions Inventory PhD						
Monitoring	Fugitive Dust Emissions	Exhaust Emissions	Working with Industry	Policy and Guidance	Worker Exposure			

CONSTRUCTION AND DEMOLITION

Monitoring - Thresholds

AE International – Europe

ATMOSPHERIC ENVIRONMENT

Atmospheric Environment 38 (2004) 4993-5002

www.elsevier.com/locate/atmosen

The impact of local fugitive PM₁₀ from building works and road works on the assessment of the European Union Limit Value

Gary W. Fuller*, David Green

Environmental Research Group, School of Health and Life Sciences, King's College London, Franklin Wilkins Building, 150 Stanford Street, London SEI 9NN, UK

Received 26 January 2004; received in revised form 10 June 2004; accepted 17 June 2004

- 250 μg m⁻³ 15 min threshold in the Construction and Demolition SPG
 - based on TEOM Measurements in Fuller & Green (2004)
- Alternatively 50 µg m⁻³ above background as an hourly mean (FDMS measurements)
- Re-examined in work for HS2
 - Assembled database of 1.8 million reference equivalent measurements from nine construction sites.
 - Construction period vs pre & post scheme to determine "trigger" value
 - A revised trigger concentration of 190 μg m⁻³ is recommended. This should be measured as an hourly mean.
 - False alarms should be limited to around 0.1 % of time

Monitoring - Information

Fugitive Dust

PM₁₀ Emission Inventory

- The importance of fugitive dust tends to be localised
- Local control damping down, mist cannons, removal of material, covering or seeding of stockpiles all effectively reduce impact
- Vehicle track out can see the impacts spread for larger distances – wheel washes, street sweeping and dust suppressants are all viable methods to minimise impacts
- Quantifying the impacts of these approaches in ambient environment is very challenging:
 - Need to control for temporal changes in emissions
 - Need to control for meteorology
 - Measurement uncertainty of indicative instruments ≈ 50%
 - Evidence is mixed...

MAQF - Heygate Estate, Southwark

- Applications of water, Calcium Magnesium Acetate (CMA) once and twice a day
- Tarmac & unpaved road
- CMA was more effective than water on tarmac road
- No methods were effective on unpaved road
- Impact was greatest during dry conditions (>66% for CMA)

MAQF – Freight Lane, Camden

- Compare the mean values during operational hours (8am – 5pm) for the weekdays of application against those when there was no CMA applied
- Increases in concentrations 3 out of 4 comparisons
- Reason for lack of response likely due to:
 - variations in vehicle flow
 - inadequate application of CMA to last for 9 hour analysis period
- Evidence for efficacy of CMA is mixed
- CMA is expensive £800 per application day

Exhaust Emissions

NO_x Emissions Inventory

How far do off-road EU emission limit values lag behind the on-road sector?

Emission limits PM

Euro IV truck/bus (LEZ compliant) = 0.02 g/kWh

Stage IIIA Excavator = 0.2-0.6 g/kWh

Stage IV Excavator = 0.025 g/kWh

Stage IIIA Excavator

Worker Exposure

- Construction dust (silica, wood, lower tox dusts)
- 40% of new cancer registrations/deaths are to construction workers (CITB)
- Estimated that more than 500 construction workers die from exposure to silica dust every year....more than 10 per week (CITB)
- Exposure regulated by Workplace Exposure Limits (WEL) for inhalable and respirable dust
- WHO classified diesel engine exhaust as carcinogenic to humans (Group 1)
- WEL for NO at (2 ppm or 2.5 mg m⁻³) by 31st August 2018.

DEMiSt Crossrail

- Characterise driver/operative exposure to inhaled diesel emissions
- Identification of dominant variables
- Identify potential intervention methods

Worker time series

Industry Outreach

CleanAirUK and 1 other Retweeted

SCR DPF Stage IIIA Generator Retrofit

- Stage IV generators not available until 2021 at earliest
- Regulations jump straight to Stage V with NRMM register exemptions as standard
- Availability of low emission generator could potentially substantially reduce NOX and PM_{2.5} emissions

LLECP worked with Aggreko and Green Urban to devise a solution and PEMS test 320 kVA generator before and after retrofit

Policy and Guidance

- Planning
- Dust Risk Assessment
- Emission Control Measures
- Site Monitoring
- Cleaner Construction Machinery

London's LEZ for NRMM

1st September 2015

- NRMM (net power 37-560kW)
- 'central activity zone'& Canary Wharf Stage IIIB
- Major development Stage IIIA

1st September 2020

- CAZ, Canary Wharf Stage IV
- Greater London Stage IIIB

2025?

Introduction of Stage V as a minimum standard

Achieved by - reorganisation, replacement, retrofit or reengining

nrmm.london

NRMM register – measuring policy impact

Wider uptake of Stage IIIB and Stage IV outside CAZ!

THE CONTROL OF D EMISSIONS DURING AND DEMOLITION SUPPLEMENTARY PLANN

JULY 2014

LONDON PLAN 2011
IMPLEMENTATION FRAMEWORK

Guidance on the assessment demolition and construction

Version 1.1

A report into civil eng London's air pollution

'Best in class' guidance

CONSTRUCTION PARTNERSHIP

- LLECP running since 2014
- Current 3 year funding ends in March 2019
- Encourage uptake of low emission approaches
 - Best in Class'
- 5 years of:
 - Industry outreach
 - Measurement methodologies
 - Emissions abatement approaches

- Guidance Document for local authorities (for industry also)
- This will aim to
 - condense all the information and learnings from both rounds of the LLECP
 - publish in one of the Institute of Civil Engineering Journals.
 - integrate this into the LLECP website to create a live resource
 - Delivered in Mar 2019

Small sensors Active site managemet	Dust suppressants Street sweeping Active site management	Engine technology Retrofit Cleaner fuels Hybrids Hydrogen Low Emission C	Innovation from OEMs CLPs Consolodation centres	Improved EI's Tighter emissions regulation NRMM LEZ in other cities	Increased awareness of exhaust emissions Diesel exposure in H&S		
High Speed2	Dust Suppressants	Construction Logistic plans					
MAQF - Heygate		NRMM Register			DEMIST		
SPG Trigger Levels		NRMM Emissions Inventory PhD					
Monitoring	Fugitive Dust Emissions	Exhaust Emissions	Working with Industry	Policy and Guidance	Worker Exposure		
CONSTRUCTION AND DEMOLITION							

SUPPORTED BY

MAYOR OF LONDON

ISLINGTON

Supported by

THE ROYAL BOROUGH OF

KENSINGTON AND CHELSEA

Balfour Beatty

Keltbray

ENERGY SOLUTIONS

Acknowledgements

Daniel Marsh
Carl Desouza
Gary Fuller
Anna Font
John Casey

Thank you for listening!

MRC-PHE
Centre for Environment & Health

Imperial College London

