WHO Air Quality Guidelines Update 2005

Dr. Michal Krzyzanowski Regional Adviser, Air Quality and Health WHO Regional Office for Europe

European Centre for Environment and Health, Bonn Office

http://www.euro.who.int/air

This presentation:

- Process of WHO AQG Update;
- Summary of the Updated Guidelines for PM. O3, NO2 and SO2
- WHO activities in 2007

WHO AQG: Global update: the process

- "Systematic review..." update of WHO AQG, 2nd ed. recommended
- Oct Nov 2004: Steering Group established;
- January 2005: Steering Group: scope & structure; authors;
- July Sept 2005: review of the 1st draft;
- 18-20 October 2005: WG meeting, Bonn (report published Feb 2006);
- Dec 2005 June 2006: finalization of background materials based on reviewer's comments (drafts 2-4);
- 5 October 2006 formal announcement of AQG
- WHO editing / printing ⇒ publication: early 2007

http://www.euro.who.int/Document/E87950.pdf

WHO AQG: Global update 2005: Steering Group

- RH Anderson (UK)
- B. Brunekreef (The Netherlands)
- B. Chen (China)
- A. Cohen (USA)
- R. Maynard (UK)
- I. Romieu (Mexico)
- KR. Smith (USA)
- S. Wangwongwatana (Thailand)

WHO AQG: Global update 2005: Table of contents & authors of 1st drafts

Chapter	Title	Authors				
Part 1. Application of AQG for policy development and risk reduction						
1	Sources of air pollution	R. Harrison (UK)				
2	Air pollution levels B. Sivertsen (Norway)					
3	Human exposure to air pollution	ion N. Janssen (The Netherlands), S. Mehta (US)				
4	Health effects of air pollution	N. Gouveia (Brazil), M. Maisonet (PAHO/Chile)				
5	Determinants of susceptibility	M. Utell (US), M. Frampton (US)				
6	Environmental equity	P. Kinney (US), MS O'Neill (US)				
7	Health impact assessment	B. Ostro (US)				
8	Applications of guidelines in policy formulation	A. Fernandez (Mexico), M. Zuk (Mexico)				
9	Indoor air quality: special issues in risk assessment and management K. Balakrishnan (India), NG Bruce (UK)					
Part 2. Risk assessment of selected pollutants						
10	Particulate matter	J. Samet (US), M. Brauer (Canada) R.Schlesinger (US)				
11	Ozone	P. Saldiva (Brazil), N. Künzli (US / Switzerland)				
12	Nitrogen dioxide	F. Forastiere (Italy), A. Peters (Germany) F. Kelly (UK), ST Holgate (UK)				
13	Sulfur dioxide	M. Lippmann (US), K. Ito (US)				

Full list of reviewers: WG Meeting Report

WHO AQG: Global update: Main results

Guideline values for PM, ozone, NO2 and SO2:

- the epidemiological evidence indicates that the possibility of adverse effects remains, even if the guideline value is achieved;
- some countries might select even lower concentrations for their standards.

Interim targets for each pollutant:

- define steps in a progressive reduction of air pollution in more polluted areas;
- promote a shift from concentrations with acute, serious health consequences to concentrations that, if achieved, would result in significant reductions in risks for acute and chronic effects.

WHO AQG: Global update: Particulate matter - annual mean

Annual mean level	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m³)	Basis for the selected level
Interim target-1 (IT-1)	70	35	Levels associated with about 15% higher long-term mortality than at AQG
Interim target-2 (IT-2)	50	25	Risk of premature mortality decreased by approximately 6% compared to IT1
Interim target-3 (IT-3)	30	15	Mortality risk reduced by approximately 6% compared to IT2 levels.
Air quality guideline (AQG)	20	10	Lowest levels at which total, CP and LCA mortality have been shown to increase (Pope et al., 2002). The use of PM _{2.5} guideline is preferred.

Passing interim targets on the way towards AQG

WHO AQG: Global update: PM: rationale for the annual mean guideline value

- Robust associations between PM2.5 and mortality in several studies with PM2.5 in the range 9-33 μg/m3;
- No apparent thresholds but statistical uncertainty at PM2.5 below 13 μg/m3;
- Annual mean of 10 μg/m3 should be below the mean for most likely effects;
- Although adverse effects on health cannot be entirely ruled out below 10 µg/m3, its attainment is expected to significantly reduce the health risks;
- AQG and IT-s for PM10 recommended in addition to PM2.5 guidelines in recognition of harmul effects of coarse PM (fraction between 2.5 and 10 μm).

Annual average PM10 concentrations observed in selected cities worldwide

WHO AQG: Global update: Particulate matter: 24-h mean

24-hour mean level *)	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m³)	Basis for the selected level
Interim target-1 (IT-1)	150	75	About 5% increase of short-term mortality over AQG
Interim target-2 (IT-2)	100	50	Aabout 2.5% increase of short- term mortality over AQG
Interim target-3 (IT-3)	75	37.5	About 1.2% increase in short- term mortality over AQG
Air quality guidelines (AQG)	50	25	Based on relation between 24-hour and annual PM levels

^{*) 99}th percentile (3 days / year)

WHO AQG: Global update: Particulate matter: rationale for the 24-h guidelines

- The annual average is recommended to take precedence over the 24-h mean since there is less concern about remaining episodic excursions at low PM levels;
- Meeting the 24-h AQG should protect against peaks of pollution leading to substantial excess morbidity or mortality;
- Immediate action recommended in case of exceeding 24-h guidelines

WHO AQG: Global update: Nitrogen dioxide

The guideline values remain unchanged at the following levels:

40 μg/m3 for annual mean;

200 μg/m3 for 1-hour mean.

Rationale:

- Experimental data: NO2 toxic above 200 μg/m3
- Epi studies: NO2 marker of mixture of combustion related pollution
- Precursor of ozone and PM2.5

WHO AQG: Global update: Summary of updated AQG values

AQG levels recommended to be achieved everywhere in order to significantly reduce the adverse health effects of pollution

Pollutant	Averaging time	AQG value
Particulate matter PM _{2.5}	1 year 24 hour (99 th percentile)	10 μg/m ³ 25 μg/m ³
PM ₁₀	1 year 24 hour (99 th percentile)	20 μg/m ³ 50 μg/m ³
Ozone, O ₃	8 hour, daily maximum	100 μg/m ³
Nitrogen dioxide, NO ₂	1 year 1 hour	40 μg/m ³ 200 μg/m ³
Sulfur dioxide, SO ₂	24 hour 10 minute	20 μg/m ³ 500 μg/m ³

Recent WHO assessment reports (2005-6)

www.euro.who.int/air

Further research needed...:

- Pollutant (exposure) * outcome (mechanism) * susceptibility
- Effects of pollution mixture
 - is "our" mixture toxic?
 - role of individual components of the mixture;
 - effects of interventions.
- Power of local evidence for triggering (& focusing) actions

WHO activities on AQ & Health in 2007

• Health relevance of PM from various sources — WHO workshop, Bonn, 26-27 March 2007 (followed by 10th TFH meeting on 28 March)

- WHO Guidelines for indoor air quality
 - Pollutants specific guidelines
 - Formaldehyde
 - Benzene
 - Naphthalene
 - Nitrogen dioxide (NO2)
 - Carbon monoxide (CO)
 - Radon (Rn)
 - Particulate matter¹
 - Halogenated compounds
 - PAH, especially BaP
 - Dampness and mould; Ventilation; Allergens (from HDM, pets)
 - Indoor combustion
 - Stove venting;
 - Household ventilation
 - Combustion quality;
 - Fuels
- Health-relevant AQ monitoring in EECCA

London Air Quality Network Seminar, King's College London, 19 January 2007

