

Contents

A puzzle.....

Source apportionment of annual mean concentrations

Preliminary thoughts

Chemical composition of source apportioned components

Weather effects

Conclusions and next steps

A puzzle.....

Source apportionment method

Total PM10 = primary + non primary

—Primary is related to NOX and is local

-Non – primary is not related to NOX and is regional

(Same approach can also be taken with PM2.5)

Deacon et al., 1997; Harrison et al., 1997; APEG, 1999; Kukkonen et al., 2001 and Stedman et al., 2001, Fuller et al. 2002 and Fuller and Green 2006.

Source apportionment method Annual mean 2001

Source apportionment method Intercept B changes in time

Source apportionment method Gradient A changes in time

Source apportionment method

Annual mean 2001 – calculating the secondary and natural background

Source apportionment method Annual mean 2001 – calculating the primary PM10

Calculating primary PM10

Given that we have a relationship $[PM_{10}] = A [NO_x] + B$

3 methods to calculate primary PM_{10} $PM_{10}(P)$

 $PM_{10}(P) = [PM_{10}] - B$ $PM_{10}(P) = A[NO_X]$ $PM_{10}(P) = ([PM_{10}] - B + A[NO_X])/2$

Used uncertainty estimates (GUM) to determine which is best

Source apportionment of annual mean concentrations

Change in annual mean primary PM10 1998 - 2003

			All sites	
Site	Туре	London Area	Change	Concentration
			μg m ³ ΤΕΟΜ *1.3	
Marylebone Road	K	Central	7.0 ± 2.6	27.7 ± 1.8
Wandsw orth 4	R	Inner	6.0 ± 1.1	10.9 ± 0.8
Ealing 2	R	Outer	4.5 ± 1.4	14.4 ± 1.0
Thurrock 1	В	Outside	3.3 ± 1.1	7.6 ± 0.7
Tow er Hamlets 1	B*	Inner	2.6 ± 1.1	8.5 ± 0.7
St Albans	В	Outside	2.5 ± 1.0	6.1 ± 0.7
Hillingdon 1	R	Outer	2.4 ± 1.3	10.3 ± 0.8
Brent 1	B*	Outer	2.3 ± 1.0	5.4 ± 0.7
Bexley 2	В	Outer	2.3 ± 1.1	5.9 ± 0.7
Kens & Chelsea 1	B*	Inner	2.2 ± 1.1	7.2 ± 0.7
Bexley 1	B*	Outer	2.0 ± 1.0	6.1 ± 0.7
Medw ay Stoke	Ru	Outside	1.8 ± 1.1	3.4 ± 0.7
Haringey 1	R	Outer	1.5 ± 1.2	9.4 ± 0.8
Mole Valley 2	В	Outside	1.5 ± 1.1	3.9 ± 0.7
A3 Roadside	R	Outer	1.1 ± 1.8	14.5 ± 1.1
Chatham	В	Outside	1.0 ± 1.1	7.0 ± 0.7
Sevenoaks	В	Outside	-0.1 ± 1.1	3.2 ± 0.7

Change in annual mean primary PM10 1998 - 2003

Primary PM10 should be reducing !

- Emission inventories say it should be reducing
- Tail pipe abatement on new vehicles and London's buses

But

- Diesels = 16% new cars in 1997 cf 38% in 2006 (SMMT 2006) but this should not offset new Euro Standards (AQEG 2006).
- No trend in black smoke concentrations in London but trends in rest of UK (AQEG 2006).
- Vehicles are getting heavier, 30% increase in last 30 years therefore increase non-tailpipe emissions (Carslaw 2006).
- Tyre and brakes technologies have changed (Boulter 2006)

Chemical composition of source apportioned components

Limited robust measurements of chemical composition of PM_{10} in London.

DEFRA networks have poor C and no means of separating volatile and non – volatile nitrate

Used measurements from Ealing 2 roadside site during 2001 – 2002

- -PM2.5 carbon measurements from Smith et al 2006 (thanks to DRI)
- -Anion measurements from Davy 2006

Also methods and measurements from Harrison et al 2003, 2004 sites in London and Birmingham 2000 - 2002

Chemical composition (~2000 – 2002)

Primary PM10

Chemical composition (~2000 – 2002)

Primary PM10

	PM _{2.5}	PM10-PM2.5	PM_{10}
Organic carbon	50%	18%	44%
Elemental carbon	50%	18%	44%
Mechanical wear / Iron- rich		64%	12%
dust		0770	12/0
Total	100%	100%	100%

Chemical composition

Non primary PM10 (TEOM measurements!)

Back to the puzzle.....

An update...

An update...

An update...

Conclusions – Non primary PM10

May indicate reduced emissions of secondary pre-cursers.

But

- -Changes are within model uncertainty
- -Barely sensitive to particulate nitrate

Conclusions – Primary PM10

Primary PM10 concentrations in London are increasing which has important implications for air quality management.

Source apportionment and recent measurements point to a roadside effect.

Contrasts with emission inventory predictions.

Confounded but not explained by weather.

Would require huge increases in non – exhaust PM10 for this to counter expected reductions in tail pipe PM10.

Next Steps..

Large increases at specific roadside sites merit further investigation.

-Fleet composition and traffic patterns

New source apportionment data is now available

- -CONCAWE
- -NPL / KCL (DEFRA) carbon measurements

Interesting artefacts in 'gravimetric' and FDMS measurements

PM2.5?

Acknowledgements

David Green, Dr. Steve Smith and Pam Davy, KCL

Local authorities and DEFRA who funded the monitoring.

