

University of London

PM_{10} Measurements – the future

University of London

PM₁₀ Measurements – the future?

Contents

- Present situation
 - -National PM monitoring
 - -London and South East PM monitoring
- Monitoring methods
 - -Intercomparisons
 - *—Equivalence trials*
- London FDMS monitoring
- FDMS Model Development
- Future?

—Report PM₁₀ reference equivalent concentrations

UK PM Monitoring

- 71 TEOM PM₁₀
- 7 Reference PM₁₀
- 4 TEOM PM_{2.5}
- 7 Reference PM_{2.5}
- 240 sites analysed by AQEG

London and South East PM Monitoring

		PM _{2.5}		
	TEOM	BAM	Gravimetric	All
London	56	12	3	15
Kent	14	6	0	1
Herts & Beds	12	1	0	0
Sussex	9	0	0	0
Other	4	0	0	0
Total	95	19	3	16

Monitoring methods

- TEOM
 - +Real time, measurement based on mass, widely used
 - 50°C leads to volatile loss
- BAM
 - +*Real time*
 - measurement by β attenuation, susceptible to interferences from water

• Gravimetric

- +*Reference method, provides sample for subsequent analysis*
- Delay between sampling and measurement, high revenue cost, +ive and –ive artefacts from NO₃, water, organic gases and particles

• FDMS

+*Real time, measurement based on mass, measurement of volatile PM*

- Additional housing requirements

Intercomparisons

- Lack of reference material for PM₁₀
- EU reference equivalence (EN12341)
 - -Equivalence based on slope and R^2
 - -Not suitable for automatic instruments
- Long history of TEOM intercomparisons
 - -Patashnick 1991 \rightarrow 1.03 + 3 μ gm⁻³
 - $-DEFRA \longrightarrow 1.3$
- Limited BAM intercomparisons
 —Marylebone 1999 → 0.82
- Demonstration of Equivalence from EU
 - *Methodology for comparing automatic methods to the reference method*
 - -Between sampler uncertainty
 - -Slopes and intercept corrections
 - -25% expanded uncertainty at the limit value

UK Equivalence Programme

- Bureau Veritas, NPL & AEA
- 2 year study, two seasons in each location
- Partisol 2025, FDMS meet equivalence criteria for PM₁₀
- FDMS met equivalence criteria for PM_{2.5}
- BAM met equivalence criteria for PM₁₀ after correction factors applied
- TEOM did not meet equivalence criteria for PM₁₀

Current Situation

- Defra's advice to Local Authorities using TEOMs
 - -Generally not necessary to replace your TEOM immediately. But when the time does come to replace it, the replacement instrument should be something that meets the equivalence criteria.
 - -TEOM data multiplied by 1.3 can still be used as an indicative measurement of gravimetric PM_{10} in the interim period
 - -30-40 daily measurements > 50 µg m⁻³ LAs should consider upgrading
- Defra's advice to Local Authorities using BAMs — Divide by 1.21 (where measured at STP)

FDMS monitoring in London

What is the FDMS?

- Filter Dynamics Measurement System
- Add on for the TEOM
- Equivalent to the reference method
- Overcomes the loss of volatile components
 - Reducing sampling temperature to $30^{\circ}C$
 - Uses a diffusion dryer to remove water
- Two measurement cycles
 - Measures PM mass Base Measurement
 - Measures PM mass lost due to volatilisation of particles - **Purge Measurement**

Model Development

4 key points allow the development of a model to correct the TEOM measurements using a regionally located FDMS instrument.

- 1. FDMS = FDMS Base FDMS Purge
- 2. FDMS = Reference method
- 3. TEOM FDMS Base = FDMS Purge
- 4. FDMS Purge is uniform over a wide area

FDMS base vs. TEOM

Presented by David Green

(FDMS base – TEOM) ~ FDMS purge

Presented by David Green

Correlation (1)

Correlation (2)

Model Development

4 key points allow the development of a model to correct the TEOM measurements using a regionally located FDMS instrument.

- 1. FDMS = FDMS Base FDMS Purge
- 2. FDMS = Reference method
- **3. TEOM FDMS Base = FDMS Purge**
- 4. FDMS Purge is uniform over a wide area

Model Development

4 key points allow the development of a model to correct the TEOM measurements using a regionally located FDMS instrument.

- 1. FDMS = FDMS Base FDMS Purge
- 2. FDMS = Reference method
- 3. TEOM FDMS Base = FDMS Purge
- 4. FDMS Purge is uniform over a wide area

What do we know about the FDMS Purge?

- Measurement made when particle free air is passing over the measurement filter
- Generally negative, indicating loss of mass from the filter
- Sometimes (but rarely) positive, indicating adsorption under some conditions
- Agrees well with mass of ammonium nitrate (*Hering, S. et al., 2004, Wittig, A. E. et al., 2004, Green and Fuller 2005*)
- Ammonium nitrate, being a secondary PM component, is likely to vary little on a regional scale. However, there has been some suggestion of an urban enhancement.

$NH_4NO_3 \approx FDMS$ Reference (Purge)

Daily Mean FDMS Purge Variation

Correlation Matrix

	Belvedere	Thames Road	Ealing	Millennium Village	Westhorne Ave	North Kensington	Marylebone Road
Belvedere	1.00						
Thames Road	0.92	1.00					
Ealing	-	0.90	1.00				
Millennium Village	0.91	0.91	-	1.00			
Westhorne Ave	0.98	0.92	0.96	0.84	1.00		
North Kensington	0.92	0.89	0.92	0.74	0.96	1.00	
Marylebone Road	0.95	0.90	0.87	0.93	0.95	0.91	1.00

Model Development

4 key points allow the development of a model to correct the TEOM measurements using a regionally located FDMS instrument.

- 1. FDMS = FDMS Base FDMS Purge
- 2. FDMS = Reference method
- 3. TEOM FDMS Base = FDMS Purge
- 4. FDMS Purge is uniform over a wide area

1. *FDMS* = *FDMSBase* – *FDMSPurge*

1. FDMS = FDMSBase - FDMSPurge

2. FDMS = Gravimetric

1. FDMS = FDMSBase - FDMSPurge

2. FDMS = Gravimetric

Gravimetric = *FDMSBase* – *FDMSPurge*

Gravimetric = *FDMSBase* – *FDMSPurge*

3. TEOM - FDMS Base = FDMS Purge

Gravimetric = *FDMSBase* – *FDMSPurge*

3. FDMS Base = TEOM - FDMS Purge

Gravimetric = *FDMSBase* – *FDMSPurge*

3. FDMS Base = TEOM - FDMS Purge

Gravimetric = (*TEOM* – *FDMSPurge*) – *FDMSPurge*

Gravimetric = *FDMSBase* – *FDMSPurge*

3. FDMS Base = TEOM - FDMS Purge

Gravimetric = *TEOM* – 2×*FDMSPurge*

Gravimetric = *TEOM* – 2×*FDMSPurge*

4. FDMS Purge is uniform over a wide area

Gravimetric = *TEOM* – 2×*FDMSPurge*

4. FDMS Purge is uniform over a wide area

Gravimetric = *TEOM* – 2×*regionalFDMSPurge*

Model Testing – Stage 1

Gravimetric = *TEOM* – 2×*FDMSPurge*

						Annual Limit Value of				
PM10 KCL TEOM	Dataset	24 hour			Orthogonal Regression		40 ug m-3		Daily Limit Value of 50 ug m-3	
		nbs	ubs	nc-s r2	Slope (b) +/- ub	Intercept (a) +/- ua	WCM/% %	6>50%LV	WCM/% °	%>50%LV (nES,nEC)
Individual Campaigns	Birmingham Winter	75	0.80	47	1.00 +/- 0.05	-0.52 +/- 0.91	7.76	23%	6.20	13% (1,2)
	Birmingham Summer	70	1.08	39	0.99 +/- 0.03	2.50 +/- 0.69	14.40	31%	11.20	18% (3,4)
	Teddington Winter	85	0.37	33	0.90 +/- 0.03	0.49 +/- 0.78	19.98	48%	19.84	42% (2,0)
	Teddington Summer	82	1.00	55	0.84 +/- 0.03	3.32 +/- 0.76	18.80	38%	20.28	18% (5,1)
	Bristol Summer	53	1.48	44	1.07 +/- 0.03	1.38 +/- 0.78	22.78	50%	20.66	43% (2,6)
	Bristol Winter	82	1.38	47	0.93 +/- 0.03	4.24 +/- 0.77	13.32	60%	9.48	38% (2,2)
	East Kilbride Summer	54	2.65	40	1.09 +/- 0.07	2.27 +/- 0.66	30.20	5%	27.70	3% (0,0)
	East Kilbride Winter	66	4.69	47	1.00 +/- 0.04	2.43 +/- 0.51	15.32	17%	12.42	6% (0,0)
All Campaigns	All Data	1.58	567	352	0.94 +/- 0.01	2.49 +/- 0.29	13.12	34%	10.64	22% (15,15)
Annual Limit Value	<20 ug m-3	348	1.59	232	0.80 +/- 0.03	3.90 +/- 0.38	22.66 -			-
	>20 ug m-3	219	1.56	120	0.87 +/- 0.03	5.38 +/- 0.89	16.48 -			-
Daily Limit Value of 50 ug m-3	<25 ug m-3	424	1.65	274	0.90 +/- 0.03	2.94 +/- 0.41			12.08 -	-
	>25 ug m-3	143	1.35	78	0.88 +/- 0.04	4.95 +/- 1.46			14.42 -	-

Model Testing – Stage 2

London Equivalence Testing Results

Teddington Winter	85	0.37	33	0.90 +/- 0.03	0.49 +/- 0.78	19.98	48%	19.84	42% (2,0)
leddington Summer	82	1.00	55	0.84 +/- 0.03	3.32 +/- 0.76	18.80	38%	20.28	18% (5,1)
Dataset	24 hou	ır	Orthogon	al Regression		Annual Lim	it Value of 4	Dailv Limit	Value of 50 up m-3
Duldool	nbs	ubs	nc-s r2	Slope (b) +/- ub	Intercept (a) +/- ua	WCM/%	%>50%LV	WCM/%	%>50%LV (nES.nEC)
Kensington Winter	71	0.11	29	0.84 +/- 0.04	1.95 +/- 0.99	24.50	34%	25.41	17% (1.0)
Kensington Summer	84	0.15	56	0.87 +/- 0.04	4.44 +/- 0.98	17.02	45%	16.00	29% (4,4)
Kensington All Data	155	0.49	85	0.86 +/- 0.03	3.52 +/- 0.80	19.32	41%	19.06	25% (4,4)
Marylebone Winter	122	0.10	47	0.88 +/- 0.04	2.26 +/- 1.01	18.66	57%	18.32	40% (2,0)
Marylebone Summer	86	0.14	57	0.86 +/- 0.03	4.71 +/- 0.76	12.38	44%	12.56	23% (4,4)
Marylebone All Data	208	0.11	104	0.86 +/- 0.03	3.96 +/- 0.63	16.30	50%	16.78	31% (6,4)
Belvedere Winter	99	0.12	35	0.85 +/- 0.04	3.25 +/- 1.04	19.82	49%	20.82	37% (3,0)
Belvedere Summer	81	0.80	53	0.90 +/- 0.04	5.17 +/- 0.90	15.44	47%	11.50	30% (5,4)
Belvedere All Data	180	0.42	88	0.87 +/- 0.03	4.62 +/- 0.75	16.26	48%	15.16	33% (8,4)
Thames Road Winter	122	0.10	47	0.92 +/- 0.04	0.93 +/- 1.07	19.14	51%	17.56	40% (3,0)
Thames Road Summer	60	0.44	47	0.85 +/- 0.05	2.55 +/- 1.05	23.78	34%	23.80	17% (5,1)
Thames Road All Data	182	0.21	94	0.88 +/- 0.03	1.80 +/- 0.74	21.18	43%	20.32	29% (8,1)
Westhorne Avenue Winter	81	0.10	25	0.93 +/- 0.04	-1.75 +/- 0.82	23.26	24%	21.18	16% (0,0)
Westhorne Avenue Summer	62	0.45	50	0.86 +/- 0.03	1.22 +/- 0.72	23.78	20%	24.14	14% (5,2)
Westhorne Avenue All Data	143	0.25	75	0.88 +/- 0.03	0.37 +/- 0.59	24.48	28%	24.06	11% (5,2)

PM_{10} measurement in the UK

PM₁₀ measurement in the UK?

Lots more questions....

How big is my coverage?

40

How big is my coverage?

4]

Why does it work?

Why does it work?

Why does it work?

Further Work...

- Further model testing
 - -Geographical extent
- Underlying mechanisms
- Application in real time
- PM_{2.5}

Acknowledgements

- London Borough of Bexley
- London Borough of Greenwich
- London Borough of Ealing
- City of Westminster
- Royal Borough of Kensington and Chelsea
- DEFRA
- Air Monitors

Summary

- PM₁₀ monitoring network which reports reference equivalent measurements
 - -Relatively little additional cost
 - -Gravimetric
 - -FDMS
 - -BAM (corrected)
 - *—TEOM (volatile corrected)*