

# Nitrogen Dioxide Diffusion Tube Survey Annual Report 2011

## London Borough of Ealing





Kathryn Mellor Graduate Environmental Scientist Checked by:

Govell Clips

**Dr Gareth Collins Technical Director** 

Approved by:

Prepared by:

Michele Hackman

**Technical Director** 

## Nitrogen Dioxide Diffusion Tube Survey Annual Report 2011

## London Borough of Ealing

| Rev | Comments           | Checked | Approved | Date      |
|-----|--------------------|---------|----------|-----------|
| No  |                    | by      | by       |           |
| 1   | Draft Report       | GMC     | MPH      | Apr 2012  |
| 2   | Draft Final Report | GMC     | MPH      | July 2012 |
|     |                    |         |          |           |

9th & 10th Floors, Sunley House, 4 Bedford Park, CR0 2AP Telephone: 020 8639 3500 Website: http://www.aecom.com

Job No 60145337 Reference v.04.12 Date Created July 2012

This document has been prepared by AECOM Limited for the sole use of our client (the "Client") and in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM Limited and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM Limited, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM Limited.

## **Table of Contents**

| Executive Summary1 |        |                                                                                                                   |        |  |
|--------------------|--------|-------------------------------------------------------------------------------------------------------------------|--------|--|
| 1                  | Introd | uction                                                                                                            | 2      |  |
|                    | 1.1    | Overview                                                                                                          | 2      |  |
|                    | 1.2    | Legislation and Policy Background                                                                                 | 2      |  |
| 0                  | Matha  | de le mu                                                                                                          |        |  |
| 2                  |        | Dreadures and Site Changes                                                                                        | 4      |  |
|                    | 2.1    | Tube Dreparation Apply and OA/OC                                                                                  | 4      |  |
|                    | 2.2    | Factors Affecting Diffusion Tube Derformance                                                                      | 4      |  |
|                    | 2.3    | Data Validation                                                                                                   | 5<br>5 |  |
|                    | 2.4    | Site Details                                                                                                      | 5      |  |
|                    | 2.5    |                                                                                                                   | 0      |  |
| 3                  | Resul  | ts                                                                                                                | 7      |  |
|                    | 3.1    | Data Capture                                                                                                      | 7      |  |
|                    | 3.2    | Bias Adjustment                                                                                                   | 7      |  |
|                    | 3.3    | Annual Mean NO <sub>2</sub> Concentrations                                                                        | 8      |  |
|                    | 3.4    | Comparison with Objectives                                                                                        | 8      |  |
|                    | 3.5    | Variation with Height                                                                                             | 9      |  |
|                    | 3.6    | Seasonal Variation                                                                                                | . 10   |  |
|                    | 3.7    | Historical Trends in NO <sub>2</sub>                                                                              | . 10   |  |
| 4                  | Concl  | usions and Recommendations                                                                                        | . 12   |  |
| Appen              | dix A: | Diffusion Tube Sites Details                                                                                      | .13    |  |
| Appen              | dix B: | Bias Adjustment Calculations                                                                                      | .27    |  |
| • •                |        |                                                                                                                   |        |  |
| Table              | 1:     | UK and EU Air Quality Objectives for NO <sub>2</sub> and NO <sub>x</sub>                                          | 3      |  |
| Table 2            | 2:     | Laboratory Summary Performance for WASP Rounds R112-115                                                           | 4      |  |
| Table :            | 3:     | Site Type Designation Criteria, based on AEAT Practical Guidance                                                  | 6      |  |
| Table 4            | 4:     | Data Capture Rates, Ealing Diffusion Tube Network, 2006 – 2011                                                    | 7      |  |
| Table              | 5:     | Summary of Continuous Monitoring Data and Local Bias Adjustment Factors, 2011                                     | 7      |  |
| Table              | 6:     | Summary of National Bias Adjustment Factors, 2011                                                                 | 8      |  |
| Table              | 7:     | Annual Mean NO <sub>2</sub> Concentrations in Ealing, 2011                                                        | 8      |  |
| Table              | 8:     | Sites Exceeding Annual Mean NO <sub>2</sub> Objective, 2011                                                       | 9      |  |
| Table              | 9:     | Sites With Bias Adjusted Annual Mean NO <sub>2</sub> Greater Than 60 µg/m <sup>3</sup> , 2011                     | 9      |  |
| Table              | 10:    | Annual Mean NO <sub>2</sub> Concentrations in Ealing, 2011                                                        | .10    |  |
| Table              | 11:    | Monthly Mean Raw NO <sub>2</sub> Concentrations in Ealing, 2011                                                   | .10    |  |
| lable              | 12:    | Raw Winter and Summer Period Mean Concentrations in Ealing, 2011                                                  | .10    |  |
| Table              | 13:    | Ealing Diffusion Tube Network Monitoring Site Details, 2010                                                       | .14    |  |
| I able             | 14:    | National Blas Adjustment Factor Calculation, Roadside and Kerbside Sites                                          | .31    |  |
| Table              | 15:    | National Blas Adjustment Factor Calculation, Near-Road Sites                                                      | .32    |  |
| I able             | 16:    | National Blas Adjustment Factor Calculation, Urban Background Sites                                               | .32    |  |
| Figure             | 1:     | Historic NO <sub>2</sub> Diffusion Tube Concentrations (Annual Mean, Uncorrected) in the London Borough of Ealing | . 11   |  |

| Figure 2:  | Monitoring Sites in Ealing – Northolt and Greenford                     |    |
|------------|-------------------------------------------------------------------------|----|
| Figure 3:  | Monitoring Sites in Ealing – Southall and Hanwell                       |    |
| Figure 4:  | Monitoring Sites in Ealing – Ealing Town and Haven Green                | 23 |
| Figure 5:  | Monitoring Sites in Ealing – South Ealing                               | 24 |
| Figure 6:  | Monitoring Sites in Ealing - Acton Town and Surrounding Area            | 25 |
| Figure 7:  | Monitoring Sites in Ealing – North Acton and Park Royal                 | 26 |
| Figure 8:  | Local Bias Adjustment Factor Calculation, Ealing Town Hall              |    |
| Figure 9:  | Local Bias Adjustment Factor Calculation, Acton Town Hall               | 29 |
| Figure 10: | Local Bias Adjustment Factor Calculation, Southall (Blair Peach School) |    |

## Executive Summary

The London Borough of Ealing Diffusion Tube Network was established several years ago to provide insight into the spatial and temporal variation of nitrogen dioxide ( $NO_2$ ) concentrations throughout the Borough. The network in 2011 was comprised of 126 tubes across 99, including several long-term monitoring sites, and supplements continuous monitoring activities undertaken at several locations within the Borough.

This report provides an analysis of the data collected during the 2011 monitoring period, running from the week commencing  $4^{th}$  January 2011 to the week commencing  $3^{rd}$  January 2012. The bias adjusted annual mean NO<sub>2</sub> concentrations are presented along with the raw monthly results and details of the bias adjustment calculation. The final results have been compared with the annual mean NO<sub>2</sub> objective to indicate areas of exceedence. A comparison is drawn with historical NO<sub>2</sub> concentration data from the network to look for evidence of long-term trends and significant changes in pollutant levels at specific locations.

A number of monitoring sites in 2011 were relocated to provide a better representation of receptors at these locations. For more details see Appendix A. Good data capture was achieved across the network with 116 tubes having greater than 90% data capture and a further 9 tube sites having greater than 75%. All sites are classified according to the Practical Guidance for Diffusion Tube Monitoring. All sites are categorised as either "kerbside", "roadside", "near-road", or "urban background".

The highest recorded annual mean NO<sub>2</sub> concentration was measured at by the single tube site at Fernlea House, Hangar Lane (93.6  $\mu$ g/m<sup>3</sup>). In total 68 tube sites in the survey were found to exceed the annual mean NO<sub>2</sub> objective and 20 tube sites were determined to be likely to exceed the hourly objective.

#### 1 Introduction

#### 1.1 Overview

AECOM was commissioned in December 2009 to manage and maintain the operation of the London Borough of Ealing nitrogen dioxide diffusion tube monitoring network. The network covers 99 sites throughout the Borough, providing information on the spatial and temporal variation in NO<sub>2</sub> concentrations in the area. The diffusion tube network supplements data collected at six continuous monitoring stations within the Borough providing high-resolution real-time measurements of NO<sub>2</sub> concentrations. These sites are located at Horn Lane, Hangar Lane Gyratory, Acton Town Hall, Ealing Town Hall, Blair Peach School (Southall) and Western Avenue.

This report covers the 2011 diffusion tube monitoring period from January to December 2011. It describes details of bias adjustment of the raw diffusion tube results, reports upon the annual mean concentrations and analyses the spatial and temporal variations at locations in the Borough.

#### 1.2 Legislation and Policy Background

Limit values and air quality objectives for nitrogen dioxide and oxides of nitrogen (NO<sub>x</sub>) were set out in the First Daughter Directive (1999/30/EC) and subsequent revisions. An annual mean NO<sub>2</sub> objective was set at 40  $\mu$ g/m<sup>3</sup> to be achieved by 1<sup>st</sup> January 2010. A 200  $\mu$ g/m<sup>3</sup> hourly mean standard not to be exceeded more than 18 hours per year was also outlined, to be achieved by the same compliance date. These objectives were reiterated in the 2008 Directive on ambient air quality and cleaner air for Europe (2008/50/EC).

The UK published its own Air Quality Strategy, which detailed the UK's position on nitrogen dioxide. The UK air quality objectives differ from the European objectives only in their compliance dates; the UK objectives were to be achieved by the end of 2005. European and UK air quality objectives have also been set for oxides of nitrogen for the protection of vegetation and ecosystems. A summary of the principal air quality objectives for  $NO_2$  and  $NO_x$  is given in Table 1.

#### Table 1: UK and EU Air Quality Objectives for NO2 and NO3

|                                                       | l                                                                          | JK Air Quality Objectives |                                                        |  |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|--|--|--|
| Pollutant                                             | Standard /<br>Concentration                                                | Measured as               | Date to be achieved<br>by and maintained<br>thereafter |  |  |  |
| Nitrogen Dioxide                                      | 200 μg/m <sup>3</sup> not to be<br>exceeded more than 18<br>times a year   | 1 Hour Mean               | 31.12.2005                                             |  |  |  |
|                                                       | 40 μg/m <sup>3</sup>                                                       | Annual Mean               |                                                        |  |  |  |
| Nitrogen Oxides<br>(for the protection of vegetation) | 30 μg/m <sup>3</sup>                                                       | Annual Mean               | 31.12.2000                                             |  |  |  |
|                                                       | E                                                                          | U Air Quality Objectives  | ality Objectives                                       |  |  |  |
|                                                       | Standard /<br>Concentration                                                | Measured as               | Date to be achieved<br>by and maintained<br>thereafter |  |  |  |
| Nitrogen Dioxide                                      | 200 μg/m <sup>3</sup> not to be<br>exceeded more than 18<br>times per year | 1 Hour Mean               | 1 January 2010                                         |  |  |  |
|                                                       | 40 μg/m³                                                                   | Annual Mean               |                                                        |  |  |  |
| Nitrogen Oxides<br>(assuming as nitrogen              | 30 μg/m³                                                                   | Annual Mean               | 19 July 2001                                           |  |  |  |

## 2 Methodology

#### 2.1 Procedures and Site Changes

At the beginning of 2011 the Ealing Diffusion Tube Network covered a total of 99 sites distributed throughout the Borough. In January, February, March and April 2011, some monitoring sites were relocated to better represent receptors around the monitoring location (more details about which monitoring sites were relocated are provided in Appendix A). The total number of tubes deployed is 126.

Triplicate tubes are deployed at 13 sites with single tubes being deployed at the remaining sites. Of the triplicate sites, six are co-located with continuous analysers. At Wendover Court, Western Avenue, four tubes are installed, one on each floor of the building, to monitor the variation in  $NO_2$  with height.

Tubes were collected and replaced every four to five weeks in accordance with the UK Diffusion Tube Calendar<sup>1</sup>. All tubes were stored in a refrigerator prior to deployment and after. Any tubes exposed outside of the time frame dictated by the calendar have been removed from the dataset. Tubes subject to contamination (e.g. spider webs, foreign bodies, etc.) or vandalised have also been excluded from the final dataset.

#### 2.2 Tube Preparation, Analysis and QA/QC

The diffusion tubes were supplied and analysed by Gradko International Ltd. To maintain consistency with previous monitoring the preparation method used was 20% v/v triethanolamine in water. Gradko International Ltd. participate in the Health and Safety Laboratory's Workplace Analysis Scheme for Proficiency (WASP) scheme, which provides a Quality Assurance / Quality Control framework for local authorities carrying out diffusion tube monitoring as a part of their local air quality management process. This scheme is based on a z-score system where if 95% of the laboratory results occur within the  $z_{score} < \pm 2$  for each WASP round, then this is deemed a satisfactory laboratory result. If this percentage is substantially lower than 95% then one can conclude that the laboratory in question may have significant systematic sources of bias in their assay and the results are questionable or unsatisfactory. Table 2 shows Gradko International Ltd. summary performance for WASP NO<sub>2</sub> PT rounds R112 – R115 which cover the 2011 monitoring period. The performance summary shows that Gradko International Ltd. has earned 100% ratings from January to September 2011 which corresponds with a 'Good' rating via the old WASP scheme. However, results obtained in October to December 2011 should be dealt with caution as the laboratory performance is 'questionable'<sup>2</sup>.

| WASP Round                          | WASP R112      | WASP R113       | WASP R1114       | WASP R115      |
|-------------------------------------|----------------|-----------------|------------------|----------------|
| Round<br>conducted in the<br>period | Jan-March 2011 | April-June 2011 | July – Sept 2011 | Oct – Dec 2011 |
| Gradko<br>International             | 100%           | 100%            | 100%             | 37.5%          |

#### Table 2: Laboratory Summary Performance for WASP Rounds R112-115

#### 2.3 Factors Affecting Diffusion Tube Performance

 $NO_2$  diffusion tubes are an indicative monitoring technique, as they do not offer the same accuracy as the reference method for  $NO_2$ , the automatic chemiluminescence analyser.  $NO_2$  diffusion tubes are affected by several factors, which may cause them to exhibit bias relative to the reference technique.

<sup>2</sup> WASP – Annual Performance Criteria for NO<sub>2</sub> Diffusion Tubes used in Local Air Quality Management (LAQM), 2007 onwards, and Summary of Laboratory Performance in Rounds 108-115. April 2012. Available from <a href="http://lagm.defra.gov.uk/diffusion-tubes/ga-gc-framework.html">http://lagm.defra.gov.uk/diffusion-tubes/ga-gc-framework.html</a>

<sup>&</sup>lt;sup>1</sup> UK Diffusion Tube Calendar 2011. Details of exposure dates and tube changeover dates available from <u>http://www.airquality.co.uk</u> .

Over-estimation may be attributed to one of the three interfering factors:

- The shortening of the diffusive path length caused by the wind
- The blocking of UV light resulting in reduced NO<sub>2</sub> photolysis in the tube
- The interference effects of peroxyacetyl nitrate (PAN).

Under-estimation can be caused by the following factors:

- Increasing exposure period. This is thought to be due to degradation of the absorbed nitrate with time
- Insufficient extraction of nitrite from the meshes.
- The photochemical degradation of the triethanolamine-nitrite complex by light. This has been minimised by the use of opaque end-caps.
- The solution used. For example, 50% v/v solution of TEA in water has been reported to lead to comparatively reduced NO<sub>2</sub> uptake.

There are a number of additional factors that may also affect diffusion tube performance including time of the year, the exposure setting (i.e. sheltered or open sites), the proximity to roads, the preparation method and analytical laboratory used, the exposure concentration and the ratio of  $NO_2$  to  $NO_x$ .

#### 2.4 Data Validation

Validation of diffusion tube readings is vital to ensure public confidence in the measurements produced. Validation is achieved through comparison of diffusion tube readings co-located alongside a continuous monitor. The comparison of the NO<sub>2</sub> concentration as measured by the diffusion tube with the continuous monitor measurement is used to derive a bias adjustment factor. Bias adjustment factors can also be obtained using the Nitrogen Dioxide Diffusion Tube Bias Adjustment spreadsheet <sup>3</sup>, which is updated periodically and collates the bias-adjustment factors obtained in co-location studies conducted nationally.

There are six operational continuous  $NO_2$  monitoring sites within the Borough which are affiliated to the London Air Quality Network (LAQN). Co-location studies were conducted at five of the six sites for the whole of 2011. Co-location at Ealing Horn Lane commenced in February 2011 due to lack of data in January 2011. The results of the co-location studies have been used to derive a local bias adjustment factor to correct the raw diffusion tube measurements.

#### 2.5 Site Details

#### 2.5.1 Locations

Single and triplicate tubes are positioned at 99 locations throughout the Borough at locations representing kerbside, roadside, near road (intermediate) and urban background sites and, where possible, to be in locations of relevant exposure. See section 2.5.2 for details of site designations. The tube locations, along with a full list of period mean raw and bias adjusted NO<sub>2</sub> concentrations are listed in Appendix A.

#### 2.5.2 Site Designations

The designation of site types was used to compare different locations statistically. Sites were categorised as kerbside, roadside, near road (intermediate) and urban background sites according to the definitions given in the "Practical Guidance for Diffusion Tube Monitoring" <sup>4</sup> report. These definitions are reproduced in Table 3 below. Site type designations are included in the site details in Appendix A.

<sup>&</sup>lt;sup>3</sup> Spreadsheet of Combined Bias Adjustment Factors. Available for download from <u>http://laqm1.defra.gov.uk/review/tools/no2/baf-national.php</u>.

<sup>&</sup>lt;sup>4</sup> AEAT (2008). Diffusion Tubes for Ambient NO<sub>2</sub> Monitoring: Practical Guidance. Report to Defra & the Devolved Administrations. Report Ref: AEAT/ENV/R/2504

| Site Type           | Definition                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kerbside            | Within 1 m of the kerb.                                                                                                                                                                                                                                                                                                                                                                                          |
| Roadside            | Between 1 m and 5 m from the kerb.                                                                                                                                                                                                                                                                                                                                                                               |
| Near Road           | More than 5 m from kerb of a nearby busy road but air quality is likely to be affected by the busy road.                                                                                                                                                                                                                                                                                                         |
| Urban<br>Background | <ul> <li>&gt;50 m from any major NO<sub>2</sub> source, e.g. multi-storey car parks;</li> <li>&gt;30 m from any very busy road (&gt;30,000 vehicles per day);</li> <li>&gt;20 m from any busy road (10,000 - 30,000 vehicles per day)</li> <li>&gt;10 m from any main road (quiet roads in residential estates are acceptable);</li> <li>&gt;5m from any area where vehicles are likely to be idling.</li> </ul> |

#### Table 3: Site Type Designation Criteria, based on AEAT Practical Guidance 4

#### 3 Results

#### 3.1 Data Capture

Data capture for the whole network in 2011 was very good (97.4%) and is summarised in Table 4. Good data capture (greater than 90%) was achieved at 116 of the 126 tube sites (90 out of 99 locations). Tubes located at the 3<sup>rd</sup> floor and ground floor of Wendover Court suffered from few thefts, resulting in 75% and 66.7% data capture, respectively. The average data capture for this site was 81.3%.

Tubes located at Bond Street, Kirn Road, Castle Road and Beech Haven Residential Care Home achieved 75% data capture. Moreover, two months of data were lost at sites located in High Street, Little Elms Meadow, Brent Road and middle of Haven Green leading to less than 90% data capture.

| Cite Turne          | Data Capture (%) |      |      |      |      |      |
|---------------------|------------------|------|------|------|------|------|
| Site Type           | 2006             | 2007 | 2008 | 2009 | 2010 | 2011 |
| All Sites           | 96.1             | 93.4 | 91.4 | 93.7 | 95.7 | 97.4 |
| Roadside / Kerbside | 96.5             | 96.4 | 94.7 | 96.0 | 94.3 | 97.8 |
| Near Roadside       | 98.8             | 95.9 | 90.9 | 94.3 | 96.8 | 96.0 |
| Urban Background    | 90.1             | 87.5 | 86.1 | 89.6 | 97.2 | 99.1 |

#### Table 4: Data Capture Rates, Ealing Diffusion Tube Network, 2006 – 2011

#### 3.2 Bias Adjustment

The results of the three co-location studies were used to calculate a local bias adjustment factor (Ealing Town Hall, Acton Town Hall and Blair Peach School, Southall). Data from Western Avenue and Horn Lane were excluded due to insufficient data capture. The triplicate tubes at Hangar Lane are not strictly co-located with the continuous monitor and so this comparison was also excluded.

The AEA Diffusion Tube Precision Accuracy Bias Spreadsheet <sup>5</sup> tool was used to calculate bias adjustment factors for each co-location site. Continuous monitoring data was sourced from the London Air Quality Network (LAQN) website <sup>6</sup>. It should be noted that the continuous monitoring data used in the bias adjustment calculations has not been ratified for the entirety of 2011 and may therefore be subject to change (see Table 3 and associated footnotes). Further details can be found in Appendix B.

#### Table 5: Summary of Continuous Monitoring Data and Local Bias Adjustment Factors, 2011

| Site Name                        | Site Type              | Annual Mean NO <sub>2</sub><br>Concentration<br>(μg/m <sup>3</sup> ) | Data<br>Capture<br>(%) | Bias<br>Adjustment<br>Factor |
|----------------------------------|------------------------|----------------------------------------------------------------------|------------------------|------------------------------|
| Ealing Town Hall                 | Near Roadside          | 42.1                                                                 | 100.0                  | 1.23                         |
| Acton Town Hall                  | Roadside /<br>Kerbside | 50.9                                                                 | 100.0                  | 1.05                         |
| Southall (Blair Peach<br>School) | Urban Background       | 29.3                                                                 | 100.0                  | 0.96                         |

Notes: Data from Ealing Town Hall and Acton Town Hall ratified to 01/02/2011; Data from Southall ratified to 02/02/2011

<sup>&</sup>lt;sup>5</sup> AEA Diffusion Tube Precision Accuracy Bias Spreadsheet. Downloaded from <u>http://laqm.defra.gov.uk/diffusion-tubes/diffusion-tubes.html</u> 23/04/2012.

<sup>&</sup>lt;sup>6</sup> London Air Quality Network Website: <u>http://www.londonair.org.uk</u> accessed 23/04/2012.

Bias adjustment factors were also sourced from the national Spreadsheet of Combined Bias Adjustment Factors <sup>7</sup> for comparison purposes. However, due to the acceptable data capture in the local co-location studies, the local bias adjustment factors in Table 5 have been applied to all of the raw diffusion tube data according to the site type designation.

#### Table 6: Summary of National Bias Adjustment Factors, 2011

| Site Type Designation    | Number of Studies | Bias Adjustment Factor |
|--------------------------|-------------------|------------------------|
| Roadside & Kerbside      | 21                | 0.89                   |
| Near Road (Urban Centre) | 1                 | 1.12                   |
| Urban Background         | 3                 | 0.87                   |

Note: Figures taken from Spreadsheet of Combined Bias Adjustment Factors (Version 03.2012). Inputs used: Analysed by Gradko International Ltd; Method – 20% TEA in Water; Year – 2012.

#### 3.3 Annual Mean NO<sub>2</sub> Concentrations

Bias adjusted annual mean NO<sub>2</sub> concentrations during 2011 were highest at the roadside sites (57.0  $\mu$ g/m<sup>3</sup>). Mean near road site concentrations were lower (52.6  $\mu$ g/m<sup>3</sup>). There are no sites classified as kerbside sites. The lowest concentrations, as expected, were recorded at the Urban Background sites (32.1  $\mu$ g/m<sup>3</sup>). The bias adjusted annual mean NO<sub>2</sub> concentration across the entire network was 49.9  $\mu$ g/m<sup>3</sup>. A summary of the bias adjusted results is presented in Table 7.

The 2011 results indicate that the annual mean NO<sub>2</sub> objective of 40  $\mu$ g/m<sup>3</sup> continues to be exceeded throughout the Borough of Ealing, particularly at roadside locations. In keeping with historical trends, the highest annual mean concentration was recorded at Fernlea House, Hangar Lane (93.6  $\mu$ g/m<sup>3</sup>; Site 81, Appendix A). The mean NO<sub>2</sub> concentration across the entire network in 2011 was 0.4  $\mu$ g/m<sup>3</sup> lower than in 2010.

#### Table 7: Annual Mean NO2 Concentrations in Ealing, 2011

| Site Type        | Bias Adjusted Annual Mean<br>NO <sub>2</sub> Concentration (μg/m <sup>3</sup> ) | Data Capture (%) |
|------------------|---------------------------------------------------------------------------------|------------------|
| Roadside         | 57.0                                                                            | 97.8             |
| Near Road        | 52.6                                                                            | 96.0             |
| Urban Background | 32.1                                                                            | 99.1             |
| All Sites        | 49.9                                                                            | 97.4             |

#### 3.4 Comparison with Objectives

As reported in Section 3.3, the annual mean  $NO_2$  concentration for the whole of the Ealing diffusion tube network exceeded the annual mean  $NO_2$  objective during 2011. Table 8 shows the number of sites exceeding the annual mean  $NO_2$  objective. Sites with data capture rates of 75% and below have been excluded.

<sup>&</sup>lt;sup>7</sup> Spreadsheet of Diffusion Tube Bias Adjustment Factors Version 03.12. Downloaded from <u>http://laqm.defra.gov.uk/bias-adjustment-factors/national-bias.html</u> on 23/04/2012.

#### Table 8: Sites Exceeding Annual Mean NO2 Objective, 2011

| Site Type Designation | Total Number of Sites | Number of Sites Exceeding<br>Objective |
|-----------------------|-----------------------|----------------------------------------|
| Kerbside              | 0                     | N/A                                    |
| Roadside              | 52                    | 35                                     |
| Near Road             | 46                    | 32                                     |
| Urban Background      | 28                    | 1                                      |
| All Sites             | 126                   | 68                                     |

It has been suggested in LAQM.TG(09) that sites where annual mean NO<sub>2</sub> concentrations are higher than 60  $\mu$ g/m<sup>3</sup> it is likely that the hourly exceedences NO<sub>2</sub> objective (hourly mean NO<sub>2</sub> concentration of 200  $\mu$ g/m<sup>3</sup> not to be exceeded on more than 18 occasions per year) may also be exceeded. A total of 20 sites in Ealing measured bias adjusted annual mean NO<sub>2</sub> concentrations greater than 60  $\mu$ g/m<sup>3</sup> and therefore have the potential to breach the short-term objective. These are listed in Table 9.

#### Table 9: Sites With Bias Adjusted Annual Mean NO<sub>2</sub> Greater Than 60 µg/m<sup>3</sup>, 2011

| Site Name / Location                                      | Bias Adjusted Annual Mean<br>NO₂ Concentration (μg/m³) |
|-----------------------------------------------------------|--------------------------------------------------------|
| Wendover Court, Western Avenue, W3, 4th Floor*            | 70.2                                                   |
| Wendover Court, Western Avenue, W3, 2 <sup>nd</sup> Floor | 72.0                                                   |
| Wendover Court, Western Avenue, W3, 1 <sup>st</sup> Floor | 69.5                                                   |
| Wendover Court, Western Avenue, W3, Ground Floor*         | 67.2                                                   |
| 25 Waverley Gardens, North Circular Road, Park Royal      | 66.6                                                   |
| 205 Old Oak Common Lane, W3                               | 65.0                                                   |
| Dexters, 182 High Street, Acton, W3                       | 69.8                                                   |
| Opposite 8 Broadway Buildings, Ealing, W5                 | 71.8                                                   |
| 55 King Street, Southall, UB2 4DQ                         | 65.6                                                   |
| 143 Church Road, Northolt, UB5                            | 67.8                                                   |
| 11 Uxbridge Road, Southall, UB1                           | 67.0                                                   |
| 53 Old Oak Common Lane                                    | 63.7                                                   |
| 2 Horsenden Lane South, Greenford, UB6                    | 64.2                                                   |
| 6 Western Avenue                                          | 72.9                                                   |
| 98 Western Avenue                                         | 62.4                                                   |
| Fernlea House, Hanger Lane (tri) - Façade                 | 81.6                                                   |
| Fernlea House, Hanger Lane - Lampost                      | 93.6                                                   |
| Ealing Western Avenue AQMS, W3 OPL (Tri)                  | 77.4                                                   |
| 326 Western Avenue, Acton                                 | 75.8                                                   |
| Middle of Haven Green*                                    | 65.4                                                   |
| Sinton Andrews Estate Agent, 8 Spring Bridge Road         | 74.4                                                   |
| Montague Lambert Solicitors, 41-42 Haven Green            | 63.0                                                   |

\* Data capture less than 90%

#### 3.5 Variation with Height

At Wendover Court, Western Avenue diffusion tubes are exposed on each floor of the four-storey building allowing the change in  $NO_2$  concentration with height to be investigated. The bias adjusted results are presented in Table 10. It should be noted that there are no valid results for the top floor site for January, February and April, due to theft of the tubes, resulting in data capture of 75%, and for the tube located on the ground floor from September to December inclusive due to theft of the tubes,

resulting in data capture of 66.7%. Therefore the data must be viewed with caution. However, these results indicate that there is no obvious decrease in  $NO_2$  concentrations with height.

| Site Type             | Bias Adjusted Annual Mean<br>NO <sub>2</sub> Concentration (μg/m <sup>3</sup> ) | Data Capture (%) |
|-----------------------|---------------------------------------------------------------------------------|------------------|
| Mean – All Floors     | 69.7                                                                            | 81.3             |
| Top Floor             | 70.2                                                                            | 75.0             |
| 2 <sup>nd</sup> Floor | 72.0                                                                            | 91.7             |
| 1 <sup>st</sup> Floor | 69.5                                                                            | 91.7             |
| Ground Floor          | 67.2                                                                            | 66.7             |

| Table 10: | Annual Mean | NO <sub>2</sub> Concenti | rations in | Ealing. | 2011 |
|-----------|-------------|--------------------------|------------|---------|------|
|           |             |                          |            | ,       |      |

#### 3.6 Seasonal Variation

The seasonal variation in  $NO_2$  concentrations during 2011 are shown in Table 11. Due to seasonal variations in the bias adjustment that can occur at diffusion tube sites the results that have been presented are the raw concentrations with no bias adjustment applied.

#### Table 11: Monthly Mean Raw NO2 Concentrations in Ealing, 2011

| Site Type           | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
|---------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Roadside            | 54.2 | 43.2 | 49.0 | 50.9 | 37.7 | 42.3 | 37.0 | 44.9 | 43.7 | 51.7 | 52.7 | 43.9 |
| Near-Road           | 46.4 | 42.3 | 46.0 | 46.7 | 34.4 | 39.1 | 33.4 | 42.2 | 40.2 | 47.1 | 51.7 | 42.2 |
| Urban<br>Background | 38.2 | 32.1 | 40.8 | 36.4 | 24.5 | 28.3 | 25.0 | 31.0 | 31.8 | 39.4 | 40.4 | 33.8 |
| All                 | 47.8 | 43.2 | 49.0 | 50.9 | 37.7 | 42.3 | 37.0 | 44.9 | 43.7 | 51.7 | 52.7 | 43.9 |

| Table 12: | Raw Winter and Summer Period Mean Conc | entrations in Ealing, 2011 |
|-----------|----------------------------------------|----------------------------|
|-----------|----------------------------------------|----------------------------|

| Site Type        | Winter Mean<br>Concentration<br>(Jan – Mar, Oct – Dec)<br>(μg/m³) | Summer Mean<br>Concentration<br>(Apr – Sep) (μg/m³) | Ratio Winter :<br>Summer |
|------------------|-------------------------------------------------------------------|-----------------------------------------------------|--------------------------|
| Roadside         | 49.1                                                              | 42.7                                                | 1.05                     |
| Near-Road        | 45.9                                                              | 39.3                                                | 1.17                     |
| Urban Background | 37.4                                                              | 29.5                                                | 1.27                     |
| All              | 48.0                                                              | 42.7                                                | 1.12                     |

Considering all site types in the network, the highest monthly mean NO<sub>2</sub> concentrations were measured in November followed by October. July and May displayed the lowest monthly mean NO<sub>2</sub> concentrations. In all cases the winter mean NO<sub>2</sub> concentrations (Jan – Mar and Oct – Dec) were higher than summer mean concentrations (Apr – Sep). The ratio of winter to summer mean concentrations ranged from 1.05 for roadside site types to 1.27 for urban background sites. For all sites collectively the ratio of winter to summer mean NO<sub>2</sub> concentration was 1.12.

#### 3.7 Historical Trends in NO<sub>2</sub>

The annual mean NO<sub>2</sub> concentrations since 2005 at 11 long-term monitoring locations in Ealing are shown in Figure 1. The results displayed are uncorrected for bias due to the change in the monitoring

period in 2008 from April – March to January – December. Despite the results showing year to year variations there are few discernible upward or downward trends over time in uncorrected annual mean concentrations at any of the long-term sites.

At sites 54 - 56, Ealing Town Hall annual mean NO<sub>2</sub> concentrations increased from 2007 to 2009 before falling again in 2010 to approximately the 2007 level. The NO<sub>2</sub> results for 2011 looks stable compared to the 2010 concentration. At site 49, 143 Church Road Northolt NO<sub>2</sub> concentrations show some evidence of a reduction since 2007. The annual mean NO<sub>2</sub> concentration at site 58, Bond Street peaked in 2007 and has since fallen to concentrations similar to those observed in 2006, with a slightly increase in 2011 compared to the previous year.



## Figure 1: Historic NO<sub>2</sub> Diffusion Tube Concentrations (Annual Mean, Uncorrected) in the London Borough of Ealing

## 4 Conclusions and Recommendations

The main conclusions of the 2011 Ealing Diffusion Tube Survey are as follows:

- The annual mean NO<sub>2</sub> concentration for all sites in the network was 49.9  $\mu$ g/m<sup>3</sup>. This represents a slight decrease of 0.4  $\mu$ g/m<sup>3</sup> relative to 2010.
- Roadside sites showed the highest annual mean NO<sub>2</sub> concentration (57.0  $\mu$ g/m<sup>3</sup>) followed by near road sites (52.6  $\mu$ g/m<sup>3</sup>). This is consistent with 2010. However, annual mean concentrations in 2011 were higher than 2010 (Roadside 56.8  $\mu$ g/m<sup>3</sup> and near road sites 49.2  $\mu$ g/m<sup>3</sup>). The annual men concentration at urban background sites have decreased in 2011 relative to 2010;
- The annual mean NO<sub>2</sub> objective of 40 μg/m<sup>3</sup> was exceeded at 70 sites;
- The maximum annual mean NO<sub>2</sub> concentration was 93.6 μg/m<sup>3</sup>, recorded at Fernlea House, Hangar Lane (Site 98);
- 20 sites recorded annual mean NO<sub>2</sub> concentrations of greater than 60  $\mu$ g/m<sup>3</sup> making it likely that the hourly objective for NO<sub>2</sub> may have been exceeded at these locations;
- Good data capture (greater than 90%) was achieved at 90 out of 99 locations;
- Winter mean concentrations were higher than summer mean concentrations at all sites in the network. The ratio of winter to summer concentrations was 1.12 for all sites.

On the basis of the findings of the 2011 survey the following recommendations are suggested:

- Continue the present level of monitoring within the Borough, in particular the long-term monitoring sites in order to preserve and continue historical trends

During the 2011 survey the following actions were taken as a result of theft.

- Relocation of the tubes at the top floor and ground floor of Wendover Court, Western Avenue to reduce the incidence of tube theft.

#### Appendix A: Diffusion Tube Sites Details

#### Table 13: Ealing Diffusion Tube Network Monitoring Site Details, 2010

|                   |                                                                   |                     |                            | Annual M       | ean NO <sub>2</sub> Cond          | entration                                            |                        |
|-------------------|-------------------------------------------------------------------|---------------------|----------------------------|----------------|-----------------------------------|------------------------------------------------------|------------------------|
| Site<br>Number    | Site Name                                                         | Site<br>Designation | Grid<br>Reference<br>(X,Y) | Raw<br>(μg/m³) | Local Bias<br>Adjusted<br>(µg/m³) | National<br>Bias<br>Adjusted<br>(μg/m <sup>3</sup> ) | Data<br>Capture<br>(%) |
| 1                 | 39 Old Oak Lane, NW10 6EJ                                         | R                   | 521587,182684              | 53.4           | 56.1                              | 47.7                                                 | 100.0                  |
| 2 <sup>(a)</sup>  | 99 Wells House Road, NW10 6EA                                     | UB                  | 521224,181913              | 38.3           | 36.8                              | 33.5                                                 | 100.0                  |
| 3 <sup>(a)</sup>  | 36 Wales Farm Road, W3 6UE                                        | R                   | 520724,181552              | 47.9           | 50.3                              | 42.8                                                 | 100.0                  |
| 4                 | 5 Leamington Park, Acton, W3 6TJ                                  | R                   | 520532,181517              | 47.9           | 50.3                              | 42.8                                                 | 100.0                  |
| 5 <sup>(a)</sup>  | 92 Long Drive, Acton W3 7PH                                       | UB                  | 521139,181436              | 37.9           | 36.4                              | 33.1                                                 | 100.0                  |
| 6                 | Wendover Court, Western Avenue, W3 - 3rd Floor                    | N                   | 519997,182178              | 57.1           | 70.2                              | 64.0                                                 | 75.0                   |
| 7                 | Wendover Court, Western Avenue, W3 - 2nd Floor                    | N                   | 519997,182178              | 58.5           | 72.0                              | 65.6                                                 | 91.7                   |
| 8                 | Wendover Court, Western Avenue, W3 - 1st Floor                    | N                   | 519997,182178              | 56.5           | 69.5                              | 63.3                                                 | 91.7                   |
| 9                 | Wendover Court, Western Avenue, W3 - Ground Floor                 | N                   | 519997,182178              | 54.6           | 67.2                              | 61.2                                                 | 66.7                   |
| 10 <sup>(a)</sup> | 25 Waverley Gardens, North Circular Road, Park Royal, NW10<br>7EE | N                   | 518600,182979              | 54.2           | 66.6                              | 60.7                                                 | 100.0                  |
| 11 <sup>(b)</sup> | 6 Brentmead Gardens, NW10 7DS                                     | UB                  | 518976,182963              | 35.9           | 34.4                              | 31.3                                                 | 100.0                  |
| 12 <sup>(a)</sup> | 3 Iveagh Terrace, NW10 7SY                                        | Ν                   | 519142,183399              | 43.9           | 54.0                              | 49.2                                                 | 100.0                  |
| 13                | 57-75 Old Oak Common Lane (PO)                                    | R                   | 521557,180996              | 52.5           | 55.2                              | 47.0                                                 | 100.0                  |
| 14 <sup>(b)</sup> | 4 St Andrews Road, W3                                             | R                   | 512138,180953              | 42.9           | 45.0                              | 38.3                                                 | 100.0                  |
| 15 <sup>(b)</sup> | 205 Old Oak Common Lane, W3                                       | R                   | 521614,180852              | 58.9           | 61.8                              | 52.6                                                 | 100.0                  |
| 16 <sup>(b)</sup> | 205 Old Oak Common Lane, W3                                       | R                   | 521614,180852              | 62.0           | 65.1                              | 55.4                                                 | 100.0                  |
| 17 <sup>(b)</sup> | 205 Old Oak Common Lane, W3                                       | R                   | 521614,180852              | 64.8           | 68.1                              | 58.0                                                 | 91.7                   |

|                    |                                                              |                     |                            | Annual M       | lean NO <sub>2</sub> Cond         | centration                                           |                        |
|--------------------|--------------------------------------------------------------|---------------------|----------------------------|----------------|-----------------------------------|------------------------------------------------------|------------------------|
| Site<br>Number     | Site Name                                                    | Site<br>Designation | Grid<br>Reference<br>(X,Y) | Raw<br>(μg/m³) | Local Bias<br>Adjusted<br>(µg/m³) | National<br>Bias<br>Adjusted<br>(μg/m <sup>3</sup> ) | Data<br>Capture<br>(%) |
| 18 <sup>(a)</sup>  | East Acton Primary School, East Acton Lane, W3 7HA           | N                   | 521093,180613              | 39.8           | 49.0                              | 44.6                                                 | 100.0                  |
| 19 <sup>(b)</sup>  | 17, The Vale                                                 | R                   | 521720,180084              | 49.4           | 51.9                              | 44.2                                                 | 100.0                  |
| 20 <sup>(a)</sup>  | 177A The Vale, W3 7RD                                        | R                   | 521088,180046              | 49.5           | 52.0                              | 44.3                                                 | 100.0                  |
| 21                 | Maples Nursery, East Churchfield Road, W3                    | UB                  | 520754,180316              | 35.6           | 34.2                              | 31.1                                                 | 100.0                  |
| 22 <sup>(a)</sup>  | 16 Lantry Court, Lexden Road, Acton, W3 9PE                  | UB                  | 519849,180485              | 30.1           | 28.9                              | 26.3                                                 | 100.0                  |
| 23 <sup>(a)</sup>  | Dexters, 182 High Street, Acton, W3                          | R                   | 520026,180141              | 66.5           | 69.8                              | 59.5                                                 | 83.3                   |
| 24                 | Acton Health Centre, Church Road, Acton, W3                  | N                   | 520128,180016              | 32.5           | 39.9                              | 36.4                                                 | 100.0                  |
| 25 <sup>(a)</sup>  | Acton Care Centre, 48 Gunnersbury Lane, W3 8EG               | N                   | 519562,179977              | 36.5           | 44.9                              | 41.0                                                 | 100.0                  |
| 26                 | Horn Lane Surgery, 156 Horn Lane, W3                         | R                   | 520180,180896              | 45.9           | 48.2                              | 41.1                                                 | 91.7                   |
| 27                 | 1-4 Peal Gardens, W13 OBA                                    | R                   | 516089,182400              | 38.3           | 40.2                              | 34.2                                                 | 100.0                  |
| 28 ( <sup>a)</sup> | 19 Runnymede Gardens, UB6 8SX                                | R                   | 515240,183102              | 42.7           | 44.9                              | 38.2                                                 | 100.0                  |
| 29                 | 14 Blenheim Close (off Western Avenue)                       | Ν                   | 514866,183116              | 39.4           | 48.5                              | 44.2                                                 | 100.0                  |
| 30                 | 205 Windmill Lane, Greenford                                 | Ν                   | 514259,182234              | 40.4           | 49.7                              | 45.3                                                 | 100.0                  |
| 31 <sup>(a)</sup>  | Greenford High School, Lady Margaret Road, Southall, UB1 2GU | Ν                   | 513158,182600              | 34.6           | 42.5                              | 38.7                                                 | 100.0                  |
| 32 <sup>(b)</sup>  | 2 Shadwell Drive, Northolt, UB5                              | UB                  | 512603,182837              | 32.5           | 31.2                              | 28.4                                                 | 100.0                  |
| 33 <sup>(a)</sup>  | Northolt Library, Church Road, UB5                           | R                   | 512089,183545              | 41.3           | 43.3                              | 36.9                                                 | 100.0                  |
| 34 <sup>(a)</sup>  | 213 Church Road, Northolt, UB5 5BE                           | UB                  | 512442,183769              | 44.7           | 42.9                              | 39.0                                                 | 100.0                  |
| 35 <sup>(a)</sup>  | West London Academy, Compton Crescent, UB5                   | UB                  | 512168,183907              | 34.6           | 33.2                              | 30.2                                                 | 100.0                  |
| 36                 | Opposite 8 Broadway Buildings, Ealing, W5                    | R                   | 517887,180914              | 68.4           | 71.8                              | 61.1                                                 | 100.0                  |

|                   |                                                  | Annual Mean NO <sub>2</sub> Concentration |                            |                |                                   |                                                      |                        |
|-------------------|--------------------------------------------------|-------------------------------------------|----------------------------|----------------|-----------------------------------|------------------------------------------------------|------------------------|
| Site<br>Number    | Site Name                                        | Site<br>Designation                       | Grid<br>Reference<br>(X,Y) | Raw<br>(μg/m³) | Local Bias<br>Adjusted<br>(µg/m³) | National<br>Bias<br>Adjusted<br>(μg/m <sup>3</sup> ) | Data<br>Capture<br>(%) |
| 37 <sup>(a)</sup> | 124 Gunnersbury Lane, W3 9BA                     | N                                         | 519404,179620              | 37.6           | 46.3                              | 42.2                                                 | 100.0                  |
| 38                | Hanwell Nursery, 25A Laurel Gardens, W7          | N                                         | 515242,180158              | 47.3           | 58.2                              | 53.0                                                 | 100.0                  |
| 39 <sup>(b)</sup> | Ealing Hospital, Uxbridge Road                   | UB                                        | 514740,179876              | 28.2           | 27.1                              | 24.6                                                 | 100.0                  |
| 40                | Hobbayne First School, Greenford Avenue, W7      | UB                                        | 515477,181081              | 32.9           | 31.6                              | 28.7                                                 | 100.0                  |
| 41 <sup>(a)</sup> | 1 Shaftesbury Gardens, Park Royal, NW10 6LJ      | R                                         | 512206,180522              | 41.5           | 43.6                              | 37.1                                                 | 100.0                  |
| 42                | Hambrough Primary and Nursery School, South Road | N                                         | 512673,180069              | 46.6           | 57.3                              | 52.2                                                 | 100.0                  |
| 43                | Hambrough Primary and Nursery School, South Road | N                                         | 512673,180069              | 47.2           | 58.1                              | 52.9                                                 | 100.0                  |
| 44                | Hambrough Primary and Nursery School, South Road | N                                         | 512673,180069              | 47.8           | 58.7                              | 53.5                                                 | 100.0                  |
| 45                | 2-4 Merrick Road, Southall, UB2                  | N                                         | 512657,179712              | 42.5           | 52.3                              | 47.6                                                 | 100.0                  |
| 46 <sup>(a)</sup> | Perivale Wood, r/o 36-38 Sunley Gardens          | UB                                        | 516160,183582              | 27.8           | 26.7                              | 24.3                                                 | 100.0                  |
| 47 <sup>(a)</sup> | Perivale Wood, Little Elms Meadow                | UB                                        | 515855,183597              | 26.5           | 25.4                              | 23.1                                                 | 83.3                   |
| 48 <sup>(a)</sup> | 55 King Street, Southall, UB2 4DQ                | R                                         | 512341,179186              | 62.5           | 65.6                              | 55.8                                                 | 100.0                  |
| 49                | 143 Church Road, Northolt, UB5                   | R                                         | 512690,183983              | 64.6           | 67.8                              | 57.7                                                 | 100.0                  |
| 50 <sup>(a)</sup> | Jubilee Gardens Library, Jubilee Gardens, UB1    | UB                                        | 513263,181526              | 35.6           | 34.1                              | 31.0                                                 | 100.0                  |
| 51                | Brent Lodge, Church Road, W7                     | UB                                        | 514740,180643              | 26.9           | 25.8                              | 23.5                                                 | 100.0                  |
| 52                | Health Centre, Netheravon Road, W7               | N                                         | 515680,180360              | 35.5           | 43.7                              | 39.8                                                 | 100.0                  |
| 53                | 11 Uxbridge Road, Southall, UB1                  | R                                         | 512768,180400              | 63.8           | 67.0                              | 57.1                                                 | 100.0                  |
| 54                | Ealing Town Hall, New Broadway, W5               | N                                         | 517534,180737              | 42.0           | 51.6                              | 47.1                                                 | 100.0                  |
| 55                | Ealing Town Hall, New Broadway, W5               | N                                         | 517534,180737              | 42.0           | 51.7                              | 47.1                                                 | 100.0                  |

|                   |                                                             |                     |                            | Annual M       |                                   |                                                      |                        |
|-------------------|-------------------------------------------------------------|---------------------|----------------------------|----------------|-----------------------------------|------------------------------------------------------|------------------------|
| Site<br>Number    | Site Name                                                   | Site<br>Designation | Grid<br>Reference<br>(X,Y) | Raw<br>(μg/m³) | Local Bias<br>Adjusted<br>(µg/m³) | National<br>Bias<br>Adjusted<br>(μg/m <sup>3</sup> ) | Data<br>Capture<br>(%) |
| 56                | Ealing Town Hall, New Broadway, W5                          | N                   | 517534,180737              | 42.2           | 51.9                              | 47.3                                                 | 100.0                  |
| 57                | Perceval House, 14/16 Uxbridge Road, W5                     | N                   | 517440,180677              | 40.3           | 49.5                              | 45.1                                                 | 91.7                   |
| 58                | 14/16 Bond Street, Ealing, W5                               | R                   | 517644,180613              | 56.3           | 59.1                              | 50.3                                                 | 75.0                   |
| 59                | South Ealing Cemetery                                       | UB                  | 517750,178860              | 29.8           | 28.6                              | 26.0                                                 | 100.0                  |
| 60                | Acton Town Hall, High Street, Acton, W3 6NE                 | R                   | 520306,180055              | 52.6           | 55.2                              | 47.0                                                 | 100.0                  |
| 61                | Acton Town Hall, High Street, Acton, W3 6NE                 | R                   | 520306,180055              | 50.5           | 53.1                              | 45.2                                                 | 100.0                  |
| 62                | Acton Town Hall, High Street, Acton, W3 6NE                 | R                   | 520306,180055              | 49.6           | 52.1                              | 44.3                                                 | 100.0                  |
| 63 <sup>(b)</sup> | 85 St Pauls Close, W5 3JX                                   | UB                  | 518594,179848              | 28.7           | 27.6                              | 25.1                                                 | 91.7                   |
| 64 <sup>(a)</sup> | 44 Acton Lane, W4 5ED                                       | R                   | 520480,178854              | 41.2           | 43.3                              | 36.8                                                 | 100.0                  |
| 65                | Clayponds Hospital and Day Treatment Centre, Sterling Place | UB                  | 518153,178709              | 31.1           | 29.8                              | 27.1                                                 | 100.0                  |
| 66                | 53 Old Oak Common Lane                                      | R                   | 521573,180932              | 60.7           | 63.7                              | 54.3                                                 | 100.0                  |
| 67 <sup>(a)</sup> | 16 Balfour Road, W13                                        | UB                  | 516703,179728              | 28.9           | 27.8                              | 25.3                                                 | 100.0                  |
| 68 <sup>(d)</sup> | 1 Kirn Road, Ealing W13 0UB                                 | R                   | 516699,180509              | 51.4           | 54.0                              | 46.0                                                 | 75.0                   |
| 69                | St David's Home, 12 Castlebar Hill, W5                      | UB                  | 516992,181698              | 32.6           | 31.3                              | 28.4                                                 | 100.0                  |
| 70 <sup>(d)</sup> | 4 Thirlmere Avenue, Perivale, UB6 8EF                       | UB                  | 517072,182912              | 38.0           | 36.5                              | 33.1622                                              | 100.0                  |
| 71                | 2 Horsenden Lane South, Greenford, UB6                      | R                   | 516368,182978              | 61.1           | 64.2                              | 54.6                                                 | 100.0                  |
| 72 <sup>(b)</sup> | 64 Hanger Lane,Ealing,W2 2JH                                | N                   | 518635,181288              | 44.5           | 54.7                              | 49.8                                                 | 91.7                   |
| 73 <sup>(a)</sup> | Oldfield Primary School, Oldfield Lane North, Greenford     | UB                  | 514722,183345              | 39.2           | 37.6                              | 34.2                                                 | 100.0                  |
| 74 <sup>(a)</sup> | Oldfield Primary School, Oldfield Lane North, Greenford     | UB                  | 514722,183345              | 39.3           | 37.7                              | 34.3                                                 | 100.0                  |

|                   |                                                              |                     |                            | Annual M       | ean NO <sub>2</sub> Cond          | centration                                           |                        |
|-------------------|--------------------------------------------------------------|---------------------|----------------------------|----------------|-----------------------------------|------------------------------------------------------|------------------------|
| Site<br>Number    | Site Name                                                    | Site<br>Designation | Grid<br>Reference<br>(X,Y) | Raw<br>(μg/m³) | Local Bias<br>Adjusted<br>(µg/m³) | National<br>Bias<br>Adjusted<br>(μg/m <sup>3</sup> ) | Data<br>Capture<br>(%) |
| 75 <sup>(a)</sup> | Oldfield Primary School, Oldfield Lane North, Greenford      | UB                  | 514722,183345              | 40.5           | 38.8                              | 35.3                                                 | 100.0                  |
| 76 <sup>(d)</sup> | 1504 Greenford Road, Greenford, UB6 0HR                      | Ν                   | 515402,185313              | 42.3           | 52.1                              | 47.4                                                 | 91.7                   |
| 77 <sup>(a)</sup> | 79 Whitton Avenue East, Greenford, UB6 0QD                   | R                   | 516867,184689              | 29.9           | 31.4                              | 26.8                                                 | 100.0                  |
| 78                | 126 Petts Hill, Northolt,                                    | Ν                   | 513794,185348              | 39.5           | 48.6                              | 44.3                                                 | 100.0                  |
| 79 <sup>(b)</sup> | 169 Castle Road, Northolt, UB5 4SG                           | N                   | 514125,184562              | 31.4           | 38.6                              | 35.2                                                 | 75.0                   |
| 80 <sup>(b)</sup> | 4 Minterne Avenue, Southall,UB2 4LL                          | N                   | 513606,178917              | 29.8           | 36.6                              | 33.4                                                 | 100.0                  |
| 81 <sup>(a)</sup> | Featherstone Primary School, Western Road, Southall, UB2 5JT | N                   | 511475,178899              | 44.6           | 54.9                              | 50.0                                                 | 100.0                  |
| 82 <sup>(a)</sup> | Featherstone Primary School, Western Road, Southall, UB2 5JT | N                   | 511475,178899              | 45.0           | 55.3                              | 50.4                                                 | 100.0                  |
| 83 <sup>(a)</sup> | Featherstone Primary School, Western Road, Southall, UB2 5JT | N                   | 511475,178899              | 44.4           | 54.6                              | 49.8                                                 | 100.0                  |
| 84 <sup>(b)</sup> | 150 Brent Road, Southall, UB2                                | R                   | 511170,179251              | 42.3           | 44.4                              | 37.8                                                 | 83.3                   |
| 85                | 6 Boston Gardens Hanwell, W7                                 | Ν                   | 516277,178882              | 36.6           | 45.0                              | 41.0                                                 | 100.0                  |
| 86 <sup>(b)</sup> | 255 Boston Road, W7 2AT                                      | N                   | 516080,179318              | 33.2           | 40.9                              | 37.2                                                 | 91.7                   |
| 87                | 7 Greenford Avenue, Southall                                 | N                   | 512753,180478              | 38.3           | 47.1                              | 42.9                                                 | 91.7                   |
| 88 <sup>(b)</sup> | Oakley House, Oakley Avenue, W5 3SB                          | N                   | 519167,180915              | 33.1           | 40.7                              | 37.1                                                 | 100.0                  |
| 89 <sup>(a)</sup> | Belmont Health Centre, 18 Western Road, Southall, UB2 5DU    | R                   | 512181,179219              | 38.1           | 40.0                              | 34.1                                                 | 100.0                  |
| 90                | 6 Western Avenue                                             | R                   | 521549,180923              | 69.5           | 72.9                              | 62.1                                                 | 100.0                  |
| 91 <sup>(c)</sup> | Martin's Court, Southbridge Way, Southall                    | Ν                   | 512560,179739              | 41.7           | 51.3                              | 46.8                                                 | 100.0                  |
| 92                | 98 Western Avenue,                                           | N                   | 521173,180981              | 50.7           | 62.4                              | 56.9                                                 | 100.0                  |
| 93                | 171 Old Oak Road                                             | R                   | 521646,180800              | 45.9           | 48.2                              | 41.0                                                 | 100.0                  |

|                    |                                       |                     |                            | Annual M       | lean NO <sub>2</sub> Cond         | centration                                           |                        |
|--------------------|---------------------------------------|---------------------|----------------------------|----------------|-----------------------------------|------------------------------------------------------|------------------------|
| Site<br>Number     | Site Name                             | Site<br>Designation | Grid<br>Reference<br>(X,Y) | Raw<br>(μg/m³) | Local Bias<br>Adjusted<br>(µg/m³) | National<br>Bias<br>Adjusted<br>(μg/m <sup>3</sup> ) | Data<br>Capture<br>(%) |
| 94                 | Southfields First and Middle School   | UB                  | 521200,179500              | 33.5           | 32.1                              | 29.2                                                 | 100.0                  |
| 95                 | Fernlea House, Hanger Lane (tri)      | R                   | 518541,182707              | 76.1           | 79.9                              | 68.0                                                 | 100.0                  |
| 96                 | Fernlea House, Hanger Lane (tri)      | R                   | 518541,182707              | 79.5           | 83.5                              | 71.1                                                 | 100.0                  |
| 97                 | Fernlea House, Hanger Lane (tri)      | R                   | 518541,182707              | 77.5           | 81.3                              | 69.3                                                 | 100.0                  |
| 98                 | Fernlea House, Hanger Lane            | R                   | 518540,182700              | 89.2           | 93.6                              | 79.7                                                 | 100.0                  |
| 99                 | 27 Wells House Road                   | UB                  | 521305,181966              | 39.3           | 37.8                              | 34.3                                                 | 100.0                  |
| 100                | 94 North Acton Road                   | N                   | 520780,182775              | 39.3           | 48.4                              | 44.1                                                 | 100.0                  |
| 101                | 914 Greenford Road (Bennetts Avenue)  | R                   | 514985,183770              | 41.3           | 43.3                              | 36.9                                                 | 100.0                  |
| 102                | Blair Peach School, Beaconsfield Road | UB                  | 511680,180071              | 30.4           | 29.2                              | 26.5                                                 | 100.0                  |
| 103                | Blair Peach School, Beaconsfield Road | UB                  | 511680,180071              | 28.4           | 27.2                              | 24.8                                                 | 100.0                  |
| 104                | Blair Peach School, Beaconsfield Road | UB                  | 511680,180071              | 29.0           | 27.8                              | 25.3                                                 | 100.0                  |
| 105                | The Straight, Southall, UB1           | N                   | 512514,179795              | 41.4           | 50.9                              | 46.4                                                 | 100.0                  |
| 106                | The Straight, Southall, UB1           | N                   | 512514,179795              | 42.0           | 51.6                              | 47.0                                                 | 100.0                  |
| 107                | The Straight, Southall, UB1           | N                   | 512514,179795              | 41.5           | 51.1                              | 46.6                                                 | 100.0                  |
| 108 <sup>(a)</sup> | 41 Manor Road, W13 OJA                | R                   | 516387,180738              | 35.2           | 37.0                              | 31.5                                                 | 100.0                  |
| 109 <sup>(a)</sup> | 41 Manor Road, W13 OJA                | R                   | 516387,180738              | 35.4           | 37.2                              | 31.6                                                 | 100.0                  |
| 110 <sup>(a)</sup> | 41 Manor Road, W13 OJA                | R                   | 516387,180738              | 33.4           | 35.1                              | 29.9                                                 | 100.0                  |
| 111                | Ealing Horn Lane AQMS (Tri)           | R                   | 520432,181428              | 53.3           | 56.0                              | 47.6                                                 | 100.0                  |
| 112                | Ealing Horn Lane AQMS (Tri)           | R                   | 520432,181428              | 58.8           | 61.7                              | 52.6                                                 | 100.0                  |

|                    | Site Name                                                           | Site<br>Designation | Grid<br>Reference<br>(X,Y) | Annual M       |                                   |                                                      |                        |
|--------------------|---------------------------------------------------------------------|---------------------|----------------------------|----------------|-----------------------------------|------------------------------------------------------|------------------------|
| Site<br>Number     |                                                                     |                     |                            | Raw<br>(μg/m³) | Local Bias<br>Adjusted<br>(µg/m³) | National<br>Bias<br>Adjusted<br>(μg/m <sup>3</sup> ) | Data<br>Capture<br>(%) |
| 113                | Ealing Horn Lane AQMS (Tri)                                         | R                   | 520432,181428              | 56.1           | 58.9                              | 50.1                                                 | 100.0                  |
| 114                | Ealing Western Avenue AQMS, W3 OPL (Tri)                            | R                   | 520430,181950              | 76.8           | 80.6                              | 68.7                                                 | 100.0                  |
| 115                | Ealing Western Avenue AQMS, W3 OPL (Tri)                            | R                   | 520430,181950              | 72.6           | 76.2                              | 64.9                                                 | 100.0                  |
| 116                | Ealing Western Avenue AQMS, W3 OPL (Tri)                            | R                   | 520430,181950              | 71.9           | 75.5                              | 64.3                                                 | 100.0                  |
| 117                | 326 Western Avenue, Acton, W3 0PL                                   | N                   | 520426,181958              | 61.7           | 75.8                              | 69.1                                                 | 100.0                  |
| 118                | 21 Haven Lane, W5 2HZ                                               | R                   | 518022,181114              | 40.9           | 42.9                              | 36.6                                                 | 100.0                  |
| 119 <sup>(a)</sup> | Gordon Road / Spring Bridge Rd.                                     | R                   | 517718,180944              | 45.1           | 47.3                              | 40.3                                                 | 91.7                   |
| 120 <sup>(b)</sup> | Middle of Haven Green                                               | N                   | 517834,181000              | 53.2           | 65.4                              | 59.6                                                 | 83.3                   |
| 121 <sup>(b)</sup> | 27 Haven Green, W5 2NZ                                              | N                   | 517940,181092              | 39.1           | 48.1                              | 43.8                                                 | 100.0                  |
| 122 <sup>(b)</sup> | 31 Castlebar Road, W5 2DJ                                           | R                   | 517472,181088              | 37.6           | 39.4                              | 33.6                                                 | 100.0                  |
| 123 <sup>(a)</sup> | Beech Haven Residential Care Home                                   | N                   | 517578,180917              | 35.7           | 43.9                              | 40.0                                                 | 75.0                   |
| 124                | Haven Green Court, Haven Green, Ealing, W5 2UZ                      | N                   | 517803,181082              | 39.0           | 48.0                              | 43.7                                                 | 100.0                  |
| 125                | Sinton Andrews Estate Agent, 8 Spring Bridge Road, London<br>W5 2AA | R                   | 517745,180827              | 70.8           | 74.4                              | 63.3                                                 | 91.7                   |
| 126 <sup>(a)</sup> | Montague Lambert Solicitors, 41-42 Haven Green, London, W5<br>2NX   | R                   | 517909,180971              | 60.0           | 63.0                              | 53.6                                                 | 100.0                  |

Notes:

<sup>(a)</sup> New for January 2011; <sup>(b)</sup> New for February 2011; <sup>(c)</sup> New for March 2011; <sup>(d)</sup> New for April 2011. Cells highlighted in green: triplicate diffusion tubes co-located with AQMS. Cells highlighted in blue: sites located at Wendover Court, Western Avenue as part of the NO<sub>2</sub> study with height.

Cells highlighted in yellow: other triplicate diffusion tube sites.

#### Figure 2: Monitoring Sites in Ealing – Northolt and Greenford



#### Figure 3: Monitoring Sites in Ealing – Southall and Hanwell



#### Figure 4: Monitoring Sites in Ealing – Ealing Town and Haven Green



#### Figure 5: Monitoring Sites in Ealing – South Ealing



#### Figure 6: Monitoring Sites in Ealing – Acton Town and Surrounding Area



#### Figure 7: Monitoring Sites in Ealing – North Acton and Park Royal



### Appendix B: Bias Adjustment Calculations

#### Figure 8: Local Bias Adjustment Factor Calculation, Ealing Town Hall

| Ch                                                                         | Checking Precision and Accuracy of Triplicate Tubes |                        |                             |                             |                             |                    |                                                                     |                                     |                   |          |                |                           |                             |                              |
|----------------------------------------------------------------------------|-----------------------------------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|---------------------------------------------------------------------|-------------------------------------|-------------------|----------|----------------|---------------------------|-----------------------------|------------------------------|
|                                                                            |                                                     |                        | Diff                        | usion Tu                    | bes Mea                     | surements          | 3                                                                   |                                     |                   |          | Automat        | tic Method                | Data Quali                  | ty Check                     |
| Period                                                                     | Start Date<br>dd/mm/yyyy                            | End Date<br>dd/mm/yyyy | Tube 1<br>μgm <sup>-3</sup> | Tube 2<br>μgm <sup>-3</sup> | Tube 3<br>µgm <sup>•3</sup> | Triplicate<br>Mean | Standard<br>Deviation                                               | Coefficient<br>of Variation<br>(CV) | 95% CI<br>of mean |          | Period<br>Mean | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data |
| 1                                                                          | 07/01/2011                                          | 01/02/2011             | 43.3                        | 37.2                        | 39.4                        | 40                 | 3.1                                                                 | 8                                   | 7.7               |          | 54.3           | 99.5                      | Good                        | Good                         |
| 2                                                                          | 01/02/2011                                          | 01/03/2011             | 47.6                        | 45.6                        | 40.1                        | 44                 | 3.9                                                                 | 9                                   | 9.7               |          | 53.8           | 98.8                      | Good                        | Good                         |
| 3                                                                          | 01/03/2011                                          | 29/03/2011             | 39.1                        | 56.8                        | 53.3                        | 50                 | 9.4                                                                 | 19                                  | 23.3              |          | 69.6           | 59.5                      | Good                        | or Data Captur               |
| 4                                                                          | 29/03/2011                                          | 27/04/2011             | 49.1                        | 47.1                        | 48.9                        | 48                 | 1.1                                                                 | 2                                   | 2.7               |          | 62.6           | 79.3                      | Good                        | Good                         |
| 5                                                                          | 27/04/2011                                          | 02/06/2011             | 34.0                        | 31.6                        | 34.8                        | 33                 | 1.6                                                                 | 5                                   | 4.1               |          | 41.6           | 95.3                      | Good                        | Good                         |
| 6                                                                          | 02/06/2011                                          | 29/06/2011             | 40.2                        | 41.0                        | 39.5                        | 40                 | 0.7                                                                 | 2                                   | 1.8               |          | 38.9           | 97.4                      | Good                        | Good                         |
| 7                                                                          | 29/06/2011                                          | 03/08/2011             | 35.8                        | 36.3                        | 36.5                        | 36                 | 0.3                                                                 | 1                                   | 0.8               |          | 45.0           | 98.5                      | Good                        | Good                         |
| 8                                                                          | 03/08/2011                                          | 02/09/2011             | 38.6                        | 36.2                        | 34.3                        | 36                 | 2.1                                                                 | 6                                   | 5.3               |          | 41.4           | 98.9                      | Good                        | Good                         |
| 9                                                                          | 02/09/2011                                          | 29/09/2011             | 40.7                        | 39.2                        | 42.4                        | 41                 | 1.6                                                                 | 4                                   | 4.0               |          | 43.8           | 99.5                      | Good                        | Good                         |
| 10                                                                         | 29/09/2011                                          | 01/11/2011             | 43.3                        | 46.2                        | 43.5                        | 44                 | 1.6                                                                 | 4                                   | 4.0               |          | 64.3           | 99.6                      | Good                        | Good                         |
| 11                                                                         | 01/11/2011                                          | 28/11/2011             | 48.9                        | 46.9                        | 51.3                        | 49                 | 2.2                                                                 | 5                                   | 5.5               |          | 69.2           | 99.4                      | Good                        | Good                         |
| 12                                                                         | 28/11/2011                                          | 05/01/2012             | 43.4                        | 39.9                        | 42.3                        | 42                 | 1.8                                                                 | 4                                   | 4.4               |          | 44.3           | 99.8                      | Good                        | Good                         |
| 13                                                                         |                                                     |                        |                             |                             |                             |                    |                                                                     |                                     |                   |          |                |                           |                             |                              |
| lt is n                                                                    | ecessary to hav                                     | e results for at l     | east two tu                 | ibes in orde                | er to calcul                | ate the precisi    | on of the meas                                                      | surements                           |                   |          | Overal         | l survey>                 | Good<br>precision           | Good<br>Overall DC           |
| Site                                                                       | Name/ ID:                                           | Ea                     | aling Tov                   | vn Hall                     |                             |                    | Precision                                                           | 12 out of 1                         | 2 periods h       | ave a C  | V smaller t    | han 20%                   | (Check average              | CV & DC from                 |
|                                                                            | Accuracy                                            | (with 9                | 5% con                      | fidence                     | interval)                   |                    | Accuracy                                                            | (with 9                             | 5% confi          | idence   | interval)      |                           | Accuracy ca                 | lculations)                  |
|                                                                            | without pe                                          | riods with C           | V larger                    | than 20                     | %                           |                    | WITH ALL                                                            | DATA                                |                   |          | í.             | 50%                       | 1                           |                              |
|                                                                            | Bias calcula                                        | ated using 1           | 1 period                    | s of data                   |                             |                    | Bias calcu                                                          | lated using 1                       | 1 periods         | s of dat | ta             | 8                         |                             |                              |
|                                                                            | В                                                   | ias factor A           | 1.23                        | (1.13 - 1                   | .35)                        |                    |                                                                     | Bias factor A                       | 1.23              | (1.13 -  | 1.35)          | se 25%                    |                             |                              |
|                                                                            |                                                     | Bias B                 | -19%                        | (-26% -                     | -11%)                       |                    |                                                                     | Bias B                              | -19%              | (-26%    | 11%)           | a 0%                      |                             |                              |
|                                                                            | Diffusion T                                         | uboo Moon:             | 44                          |                             |                             |                    | Diffusion                                                           | Tuboo Moon:                         | 44                | uam-3    |                | E .                       | Without-CV>20%              | With all data                |
|                                                                            | Dimusion Tubes Mean: 41 µgm                         |                        |                             |                             |                             |                    | Moon C                                                              | (Dresision)                         | 41                | µgm      |                | -25%                      | -                           |                              |
|                                                                            | viean Cv                                            | (Frecision).           | 4                           |                             |                             |                    | wear ov                                                             | (Frecision).                        | 4                 |          |                | E con                     |                             |                              |
| Automatic Mean: 51 μgm <sup>-3</sup><br>Data Capture for periods used: 97% |                                                     |                        |                             |                             |                             |                    | Automatic Mean: 51 µgm <sup>-3</sup>                                |                                     |                   |          |                | □ -50%                    |                             |                              |
|                                                                            | Adjusted T                                          | ubes Mean:             | 51 (4                       | 7 - 56)                     | µgm <sup>-3</sup>           | 3                  | Adjusted Tubes Mean: 51 (47 - 56) µgm <sup>-3</sup> Jaume Targa, fo |                                     |                   |          |                |                           | ga, for AEA                 |                              |
|                                                                            |                                                     |                        |                             |                             |                             |                    |                                                                     |                                     |                   |          |                | Ver                       | sion 04 - Feb               | ruary 2011                   |

#### Figure 9: Local Bias Adjustment Factor Calculation, Acton Town Hall

## **Checking Precision and Accuracy of Triplicate Tubes**

| Checking Precision and Accuracy of Triplicate Tubes |                          |                        |                             |                             |                             |                    |                       |                                     |                   |  |                |                           |                             |                    |
|-----------------------------------------------------|--------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|-----------------------|-------------------------------------|-------------------|--|----------------|---------------------------|-----------------------------|--------------------|
|                                                     |                          |                        | Diffu                       | usion Tu                    | bes Mea                     | surements          | 5                     |                                     |                   |  | Automa         | tic Method                | Data Quali                  | ity Che            |
| Period                                              | Start Date<br>dd/mm/yyyy | End Date<br>dd/mm/yyyy | Tube 1<br>μgm <sup>-3</sup> | Tube 2<br>μgm <sup>-3</sup> | Tube 3<br>μgm <sup>-3</sup> | Triplicate<br>Mean | Standard<br>Deviation | Coefficient<br>of Variation<br>(CV) | 95% CI<br>of mean |  | Period<br>Mean | Data<br>Capture<br>(% DC) | Tubes<br>Precision<br>Check | Auton<br>Mon<br>Da |
| 1                                                   | 07/01/2011               | 01/02/2011             | 54.3                        | 44.2                        | 55.3                        | 51                 | 6.1                   | 12                                  | 15.3              |  | 54.3           | 99.8                      | Good                        | Go                 |
| 2                                                   | 01/02/2011               | 01/03/2011             | 61.9                        | 52.8                        | 48.1                        | 54                 | 7.0                   | 13                                  | 17.5              |  | 53.8           | 99.0                      | Good                        | Goo                |
| 3                                                   | 01/03/2011               | 29/03/2011             | 52.9                        | 60.0                        | 41.6                        | 51                 | 9.3                   | 18                                  | 23.0              |  | 69.6           | 99.6                      | Good                        | Goo                |
| 4                                                   | 29/03/2011               | 27/04/2011             | 51.5                        | 50.6                        | 52.6                        | 52                 | 1.0                   | 2                                   | 2.4               |  | 62.6           | 99.1                      | Good                        | Goo                |
| 5                                                   | 27/04/2011               | 02/06/2011             | 41.2                        | 43.5                        | 41.2                        | 42                 | 1.3                   | 3                                   | 3.3               |  | 41.6           | 99.7                      | Good                        | Goo                |
| 6                                                   | 02/06/2011               | 29/06/2011             | 44.2                        | 45.7                        | 43.8                        | 45                 | 1.0                   | 2                                   | 2.6               |  | 38.9           | 82.7                      | Good                        | Goo                |
| 7                                                   | 29/06/2011               | 03/08/2011             | 43.2                        | 40.6                        | 44.4                        | 43                 | 1.9                   | 5                                   | 4.8               |  | 45.0           | 99.8                      | Good                        | Goo                |
| 8                                                   | 03/08/2011               | 02/09/2011             | 49.5                        | 49.4                        | 53.1                        | 51                 | 2.1                   | 4                                   | 5.2               |  | 41.4           | 72.2                      | Good                        | or Data            |
| 9                                                   | 02/09/2011               | 29/09/2011             | 44.7                        | 46.5                        | 51.2                        | 47                 | 3.4                   | 7                                   | 8.4               |  | 43.8           | 99.4                      | Good                        | Goo                |
| 10                                                  | 29/09/2011               | 01/11/2011             | 81.5                        | 67.1                        | 60.2                        | 70                 | 10.9                  | 16                                  | 27.1              |  | 64.3           | 99.1                      | Good                        | Goo                |
| 11                                                  | 01/11/2011               | 28/11/2011             | 68.7                        | 64.5                        | 62.1                        | 65                 | 3.4                   | 5                                   | 8.4               |  | 69.2           | 99.7                      | Good                        | Goo                |
| 12                                                  | 28/11/2011               | 05/01/2012             | 37.7                        | 41.4                        | 41.7                        | 40                 | 2.2                   | 5                                   | 5.5               |  | 44.3           | 85.9                      | Good                        | Goo                |
| 13                                                  | 3                        |                        |                             |                             |                             |                    |                       |                                     |                   |  |                |                           |                             |                    |
| It is                                               | necessary to have        | to reculte for at      | loast two ti                | thes in orde                | ar to calcul                | ato the procisi    | ion of the measure    | uromonte                            |                   |  |                |                           | Cood                        | Cov                |

Precision

Accuracy WITH ALL DA

| 18         | 23.0        |                       | 69.6                                    | 99.6              | Good                                  | Good                         |
|------------|-------------|-----------------------|-----------------------------------------|-------------------|---------------------------------------|------------------------------|
| 2          | 2.4         |                       | 62.6                                    | 99.1              | Good                                  | Good                         |
| 3          | 3.3         |                       | 41.6                                    | 99.7              | Good                                  | Good                         |
| 2          | 2.6         |                       | 38.9                                    | 82.7              | Good                                  | Good                         |
| 5          | 4.8         |                       | 45.0                                    | 99.8              | Good                                  | Good                         |
| 4          | 5.2         |                       | 41.4                                    | 72.2              | Good                                  | or Data Capture              |
| 7          | 8.4         |                       | 43.8                                    | 99.4              | Good                                  | Good                         |
| 16         | 27.1        |                       | 64.3                                    | 99.1              | Good                                  | Good                         |
| 5          | 8.4         |                       | 69.2                                    | 99.7              | Good                                  | Good                         |
| 5          | 5.5         |                       | 44.3                                    | 85.9              | Good                                  | Good                         |
|            |             |                       |                                         |                   |                                       |                              |
| ents       |             |                       | Overa                                   | ll survey>        | Good<br>precision                     | Good<br>Overall DC           |
| 2 out of 1 | 2 periods h | nave a C <sup>1</sup> | V smaller t                             | han 20%           | (Check average<br>Accuracy ca         | CV & DC from<br>alculations) |
| A          |             |                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 50%               | 1                                     |                              |
| d using '  | 11 period   | s of dat              | a                                       | <b>m</b><br>• 25% |                                       |                              |
| factor A   | 1.05        | (0.97 -               | 1.14)                                   | Bia               |                                       |                              |
| Bias B     | -5%         | (-13%                 | - 3%)                                   | - a 0%            | I I I I I I I I I I I I I I I I I I I | T                            |
| s Mean:    | 51          | µgm <sup>-3</sup>     |                                         | Lug -25%          | Without CV>20%                        | With all data                |
| ecision):  | 8           |                       | والمتعادية وسيناد                       | Lis I             |                                       |                              |
| c Mean:    | 53          | µgm <sup>-3</sup>     |                                         | <b>a</b> -50%     |                                       |                              |
| e for peri | ods used:   | 97%                   |                                         |                   |                                       |                              |

Data Quality Check

Jaume Targa, for AEA

Version 04 - February 2011

Automatic

Monitor

Data

Good

Good

It is necessary to have results for at least two tubes in order to calculate the precision of the measurem

| Sit | e Name/ ID:  | Ac              | Acton Town Hall |                   |                   |  |  |  |  |  |
|-----|--------------|-----------------|-----------------|-------------------|-------------------|--|--|--|--|--|
|     | Accuracy     | (with 98        | 5% conf         | idence i          | interval)         |  |  |  |  |  |
|     | without pe   | riods with C    | / larger        | than 20           | %                 |  |  |  |  |  |
|     | Bias calcula | s of data       | a               |                   |                   |  |  |  |  |  |
|     | В            | ias factor A    | 1.05            | (0.97 - 1         | 1.14)             |  |  |  |  |  |
|     |              | Bias B          | -5%             | (-13% -           | - 3%)             |  |  |  |  |  |
|     | Diffusion To | ubes Mean:      | 51              | µgm <sup>-3</sup> |                   |  |  |  |  |  |
|     | Mean CV      | (Precision)     | 8               |                   |                   |  |  |  |  |  |
|     | Autor        | natic Mean:     | 53              | µgm <sup>-3</sup> |                   |  |  |  |  |  |
|     | Data Capi    | ture for period | ls used:        | 97%               |                   |  |  |  |  |  |
|     | Adjusted To  | ubes Mean:      | 53 (49          | 9 - 58)           | µgm <sup>-3</sup> |  |  |  |  |  |

| Bias calculated using 11 | period   | s of da           | ta                |
|--------------------------|----------|-------------------|-------------------|
| Bias factor A            | 1.05     | (0.97 -           | 1.14)             |
| Bias B                   | -5%      | (-13%             | - 3%)             |
| Diffusion Tubes Mean:    | 51       | µgm <sup>-3</sup> | 3                 |
| Mean CV (Precision):     | 8        |                   |                   |
| Automatic Mean:          | 53       | µgm <sup>-3</sup> | }                 |
| Data Capture for perior  | ds used: | 97%               |                   |
| Adjusted Tubes Mean:     | 53 (49   | - 58)             | µgm <sup>-3</sup> |

29

#### Figure 10: Local Bias Adjustment Factor Calculation, Southall (Blair Peach School)

| Ch                                                                                                                                                                                                                                                                                                                                                | Checking Precision and Accuracy of Triplicate Tubes |                        |                             |                             |                             |                    |                                                                               |                                                                                                                                 |                                                           |                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                   |                                                     |                        | Diffu                       | usion Tu                    | bes Mea                     | surements          | ;                                                                             |                                                                                                                                 |                                                           |                                                                         | Automat                        | ic Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Data Quali                  | ty Check                     |  |
| Period                                                                                                                                                                                                                                                                                                                                            | Start Date<br>dd/mm/yyyy                            | End Date<br>dd/mm/yyyy | Tube 1<br>μgm <sup>-3</sup> | Tube 2<br>μgm <sup>-3</sup> | Tube 3<br>µgm <sup>-3</sup> | Triplicate<br>Mean | Standard<br>Deviation                                                         | Coefficient<br>of Variation<br>(CV)                                                                                             | 95% CI<br>of mean                                         |                                                                         | Period<br>Mean                 | Data<br>Capture<br>(% DC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tubes<br>Precision<br>Check | Automatic<br>Monitor<br>Data |  |
| 1                                                                                                                                                                                                                                                                                                                                                 | 07/01/2011                                          | 01/02/2011             | 35.9                        | 35.2                        | 33.4                        | 35                 | 1.3                                                                           | 4                                                                                                                               | 3.3                                                       |                                                                         | 36.7                           | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Good                        | Good                         |  |
| 2                                                                                                                                                                                                                                                                                                                                                 | 01/02/2011                                          | 01/03/2011             | 35.3                        | 35.8                        | 34.0                        | 35                 | 0.9                                                                           | 3                                                                                                                               | 2.2                                                       |                                                                         | 34.5                           | 99.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Good                        | Good                         |  |
| 3                                                                                                                                                                                                                                                                                                                                                 | 01/03/2011                                          | 29/03/2011             | 39.3                        | 38.9                        | 33.4                        | 37                 | 3.3                                                                           | 9                                                                                                                               | 8.2                                                       |                                                                         | 45.8                           | 99.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Good                        | Good                         |  |
| 4                                                                                                                                                                                                                                                                                                                                                 | 29/03/2011                                          | 27/04/2011             | 36.9                        | 27.4                        | 35.0                        | 33                 | 5.0                                                                           | 15                                                                                                                              | 12.4                                                      |                                                                         | 35.4                           | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Good                        | Good                         |  |
| 5                                                                                                                                                                                                                                                                                                                                                 | 27/04/2011                                          | 02/06/2011             | 22.2                        | 17.4                        | 19.5                        | 20                 | 2.4                                                                           | 12                                                                                                                              | 6.0                                                       |                                                                         | 16.2                           | 94.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Good                        | Good                         |  |
| 6                                                                                                                                                                                                                                                                                                                                                 | 02/06/2011                                          | 29/06/2011             | 25.5                        | 22.0                        | 24.9                        | 24                 | 1.9                                                                           | 8                                                                                                                               | 4.7                                                       |                                                                         | 16.3                           | 99.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Good                        | Good                         |  |
| 7                                                                                                                                                                                                                                                                                                                                                 | 29/06/2011                                          | 03/08/2011             | 19.0                        | 18.6                        | 18.6                        | 19                 | 0.2                                                                           | 1                                                                                                                               | 0.6                                                       |                                                                         | 16.1                           | 99.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Good                        | Good                         |  |
| 8                                                                                                                                                                                                                                                                                                                                                 | 03/08/2011                                          | 02/09/2011             | 26.4                        | 27.1                        | 25.5                        | 26                 | 0.8                                                                           | 3                                                                                                                               | 2.0                                                       |                                                                         | 19.7                           | 99.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Good                        | Good                         |  |
| 9                                                                                                                                                                                                                                                                                                                                                 | 02/09/2011                                          | 29/09/2011             | 27.9                        | 27.4                        | 27.6                        | 28                 | 0.2                                                                           | 1                                                                                                                               | 0.5                                                       |                                                                         | 23.0                           | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Good                        | Good                         |  |
| 10                                                                                                                                                                                                                                                                                                                                                | 29/09/2011                                          | 01/11/2011             | 31.9                        | 30.4                        | 31.3                        | 31                 | 0.7                                                                           | 2                                                                                                                               | 1.8                                                       |                                                                         | 25.6                           | 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Good                        | Good                         |  |
| 11                                                                                                                                                                                                                                                                                                                                                | 01/11/2011                                          | 28/11/2011             | 32.1                        | 30.0                        | 36.1                        | 33                 | 3.1                                                                           | 9                                                                                                                               | 7.7                                                       |                                                                         | 36.8                           | 99.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Good                        | Good                         |  |
| 12                                                                                                                                                                                                                                                                                                                                                | 28/11/2011                                          | 05/01/2012             | 32.4                        | 30.1                        | 28.8                        | 30                 | 1.8                                                                           | 6                                                                                                                               | 4.5                                                       |                                                                         | 30.1                           | 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Good                        | Good                         |  |
| 13                                                                                                                                                                                                                                                                                                                                                |                                                     |                        |                             |                             |                             |                    |                                                                               |                                                                                                                                 |                                                           |                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                              |  |
| lt is n                                                                                                                                                                                                                                                                                                                                           | ecessary to hav                                     | e results for at l     | least two tu                | ibes in ord                 | er to calcul                | ate the precisi    | on of the meas                                                                | surements                                                                                                                       |                                                           | 6.                                                                      | Overal                         | survey>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Good<br>precision           | Good<br>Overall DC           |  |
| Site                                                                                                                                                                                                                                                                                                                                              | Name/ ID:                                           |                        | South                       | all                         |                             |                    | Precision 12 out of 12 periods have a CV smaller                              |                                                                                                                                 |                                                           |                                                                         |                                | than 20% (Check average CV & DC from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                              |  |
| Accuracy (with 95% confidence interval)<br>without periods with CV larger than 20%<br>Bias calculated using 12 periods of data<br>Bias factor A 0.96 (0.85 - 1.09)<br>Bias B 4% (-8% - 17%)<br>Diffusion Tubes Mean: 29 µgm <sup>-3</sup><br>Mean CV (Precision): 6<br>Automatic Mean: 28 µgm <sup>-3</sup><br>Data Capture for periods used: 99% |                                                     |                        |                             |                             |                             |                    | Accuracy<br>WITH ALL<br>Bias calcu<br>Diffusion<br>Mean CV<br>Auto<br>Data Ca | (with 9<br>DATA<br>Ilated using 1<br>Bias factor A<br>Bias B<br>Tubes Mean:<br>( (Precision):<br>matic Mean:<br>pture for perio | 2 periods<br>0.96 (<br>4% (<br>29<br>6<br>28<br>0ds used: | dence<br>c of dat:<br>(0.85 - 1<br>(-8% - 1<br>μgm <sup>-3</sup><br>99% | interval)<br>a<br>1.09)<br>7%) | 50%<br>B 25%<br>office Bias<br>office B | Accuracy ca                 | With all data                |  |
|                                                                                                                                                                                                                                                                                                                                                   | Adjusted Tu                                         | ubes Mean:             | 28 (2                       | 5 - 32)                     | µgm⁻°                       |                    | Adjusted                                                                      | Tubes Mean:                                                                                                                     | 28 (25                                                    | - 32)                                                                   | µgm <sup>™</sup>               | Ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jaume Tar<br>sion 04 - Feb  | ga, for AEA<br>ruary 2011    |  |

#### Table 14: National Bias Adjustment Factor Calculation, Roadside and Kerbside Sites

| Analysed<br>By <sup>1</sup> | Method           | Site<br>Type | Local Authority                                                | Length of<br>Study<br>(months) | Diffusion<br>Tube Mean<br>Conc. (Dm)<br>(μg/m <sup>3</sup> ) | Automatic<br>Monitor Mean<br>Conc. (Cm)<br>(μg/m <sup>3</sup> ) | Bias (B) | Tube<br>Precision <sup>6</sup> | Bias Adj<br>Factor (A)<br>(Cm/Dm) |
|-----------------------------|------------------|--------------|----------------------------------------------------------------|--------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|----------|--------------------------------|-----------------------------------|
| Gradko                      | 20% TEA in Water | R            | Scarborough Borough Council                                    | 12                             | 35                                                           | 37                                                              | -4.7%    | G                              | 1.05                              |
| Gradko                      | 20% TEA in Water | R            | Dudley MBC                                                     | 12                             | 35                                                           | 28                                                              | 23.3%    | G                              | 0.81                              |
| Gradko                      | 20% TEA in Water | R            | Dudley MBC                                                     | 11                             | 45                                                           | 40                                                              | 11.8%    | G                              | 0.89                              |
| Gradko                      | 20% TEA in Water | K            | South Lakeland District Council                                | 10                             | 41                                                           | 38                                                              | 8.3%     | G                              | 0.92                              |
| Gradko                      | 20% TEA in Water | R            | Gedling Borough Council                                        | 11                             | 43                                                           | 35                                                              | 24.5%    | G                              | 0.80                              |
| Gradko                      | 20% TEA in Water | R            | Gateshead                                                      | 12                             | 39                                                           | 37                                                              | 4.9%     | Р                              | 0.95                              |
| Gradko                      | 20% TEA in Water | R            | Gateshead                                                      | 12                             | 37                                                           | 36                                                              | 1.8%     | G                              | 0.98                              |
| Gradko                      | 20% TEA in Water | R            | Gateshead                                                      | 10                             | 33                                                           | 31                                                              | 5.1%     | G                              | 0.95                              |
| Gradko                      | 20% TEA in Water | R            | Gosport Borough Council                                        | 10                             | 28                                                           | 25                                                              | 11.1%    | G                              | 0.90                              |
| Gradko                      | 20% TEA in Water | R            | Dudley MBC                                                     | 9                              | 50                                                           | 51                                                              | -1.5%    | G                              | 1.02                              |
| Gradko                      | 20% TEA in Water | К            | Marylebone Road<br>Intercomparison                             | 12                             | 111                                                          | 100                                                             | 11.4%    | G                              | 0.90                              |
| Gradko                      | 20% TEA in Water | R            | Boston Borough Council                                         | 11                             | 57                                                           | 36                                                              | 59.6%    | Р                              | 0.63                              |
| Gradko                      | 20% TEA in Water | R            | Exeter City Council                                            | 11                             | 37                                                           | 33                                                              | 15.1%    | S                              | 0.87                              |
| Gradko                      | 20% TEA in Water | R            | Bromsgrove District Council<br>(Worcester Regulatory Services) | 10                             | 56                                                           | 53                                                              | 6.0%     | G                              | 0.94                              |
| Gradko                      | 20% TEA in Water | R            | Monmouthshire County Council                                   | 11                             | 47                                                           | 40                                                              | 17.9%    | S                              | 0.85                              |
| Gradko                      | 20% TEA in Water | К            | New Forest District Council                                    | 10                             | 49                                                           | 42                                                              | 16.7%    | G                              | 0.86                              |
| Gradko                      | 20% TEA in Water | R            | New Forest District Council                                    | 12                             | 34                                                           | 26                                                              | 29.9%    | G                              | 0.77                              |
| Gradko                      | 20% TEA in Water | R            | Fareham Borough Council                                        | 12                             | 39                                                           | 33                                                              | 17.4%    | G                              | 0.85                              |
| Gradko                      | 20% TEA in Water | R            | Rushcliffe BC                                                  | 11                             | 35                                                           | 39                                                              | -9.5%    | G                              | 1.10                              |
| Gradko                      | 20% TEA in Water | R            | Carlisle City Council                                          | 12                             | 35                                                           | 28                                                              | 24.8%    | G                              | 0.80                              |
| Gradko                      | 20% TEA in Water | 0            | North Warwickshire Borough<br>Council                          | 12                             | 48                                                           | 39                                                              | 23.0%    | G                              | 0.81                              |
| Gradko                      | 20% TEA in Water | R            | Wokingham Borough Council                                      | 11                             | 41                                                           | 38                                                              | 8.6%     | G                              | 0.92                              |
|                             |                  |              |                                                                |                                |                                                              |                                                                 |          | Average                        | 0.89                              |

#### Table 15: National Bias Adjustment Factor Calculation, Near-Road Sites

| Analysed<br>By <sup>1</sup> | Method              | Site Type | Local Authority             | Length of<br>Study<br>(months) | Diffusion Tube<br>Mean Conc.<br>(Dm) (μg/m <sup>3</sup> ) | Automatic Monitor<br>Mean Conc. (Cm)<br>(μg/m <sup>3</sup> ) | Bias (B) | Tube<br>Precision | Bias Adjustment<br>Factor (A)<br>(Cm/Dm) |
|-----------------------------|---------------------|-----------|-----------------------------|--------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|----------|-------------------|------------------------------------------|
| Gradko                      | 20% TEA<br>in Water | UC        | Southampton City<br>Council | 12                             | 31                                                        | 35                                                           | -10.8%   | G                 | 1.12                                     |
|                             |                     |           |                             |                                |                                                           |                                                              |          | Average           | 1.12                                     |

#### Table 16: National Bias Adjustment Factor Calculation, Urban Background Sites

| Analysed<br>By <sup>1</sup> | Method              | Site Type | Local Authority          | Length of<br>Study<br>(months) | Diffusion Tube<br>Mean Conc.<br>(Dm) (μg/m <sup>3</sup> ) | Automatic<br>Monitor Mean<br>Conc. (Cm)<br>(μg/m³) | Bias (B) | Tube<br>Precision <sup>6</sup> | Bias Adjustment<br>Factor (A)<br>(Cm/Dm) |
|-----------------------------|---------------------|-----------|--------------------------|--------------------------------|-----------------------------------------------------------|----------------------------------------------------|----------|--------------------------------|------------------------------------------|
| Gradko                      | 20% TEA<br>in Water | UB        | Dudley MBC               | 12                             | 28                                                        | 25                                                 | 10.0%    | G                              | 0.91                                     |
| Gradko                      | 20% TEA<br>in Water | UB        | Luton Borough<br>Council | 11                             | 39                                                        | 35                                                 | 11.1%    | G                              | 0.90                                     |
| Gradko                      | 20% TEA<br>in Water | UB        | Belfast City Council     | 12                             | 36                                                        | 29                                                 | 23.5%    | G                              | 0.81                                     |
|                             |                     |           |                          |                                |                                                           |                                                    |          | Average                        | 0.87                                     |